Source code for latools.processes.signal_id

import numpy as np
from scipy.stats import gaussian_kde
from scipy.optimize import curve_fit

from ..helpers.helpers import Bunch, fastgrad, fastsmooth, findmins, bool_2_indices
from ..helpers.stat_fns import gauss

[docs]def autorange(t, sig, gwin=7, swin=None, win=30, on_mult=(1.5, 1.), off_mult=(1., 1.5), nbin=10, transform='log', thresh=None): """ Automatically separates signal and background in an on/off data stream. **Step 1: Thresholding.** The background signal is determined using a gaussian kernel density estimator (kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions, corresponding to 'signal' and 'background'. The minima between these two distributions is taken as a rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold is identified as a 'transition'. **Step 2: Transition Removal.** The width of the transition regions between signal and background are then determined, and the transitions are excluded from analysis. The width of the transitions is determined by fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point where the gaussian intensity is at at `conf` time the gaussian maximum. These gaussians are fit to subsets of the data centered around the transitions regions determined in Step 1, +/- `win` data points. The peak is further isolated by finding the minima and maxima of a second derivative within this window, and the gaussian is fit to the isolated peak. Parameters ---------- t : array-like Independent variable (usually time). sig : array-like Dependent signal, with distinctive 'on' and 'off' regions. gwin : int The window used for calculating first derivative. Defaults to 7. swin : int The window used for signal smoothing. If None, ``gwin // 2``. win : int The width (c +/- win) of the transition data subsets. Defaults to 20. on_mult and off_mult : tuple, len=2 Control the width of the excluded transition regions, which is defined relative to the peak full-width-half-maximum (FWHM) of the transition gradient. The region n * FHWM below the transition, and m * FWHM above the tranision will be excluded, where (n, m) are specified in `on_mult` and `off_mult`. `on_mult` and `off_mult` apply to the off-on and on-off transitions, respectively. Defaults to (1.5, 1) and (1, 1.5). transform : str How to transform the data. Default is 'log'. Returns ------- fbkg, fsig, ftrn, failed : tuple where fbkg, fsig and ftrn are boolean arrays the same length as sig, that are True where sig is background, signal and transition, respecively. failed contains a list of transition positions where gaussian fitting has failed. """ failed = [] # smooth signal if swin is not None: sigs = fastsmooth(sig, swin) else: sigs = sig # transform signal if transform == 'log': tsigs = np.log10(sigs) else: tsigs = sigs if thresh is None: bins = 50 kde_x = np.linspace(tsigs.min(), tsigs.max(), bins) kde = gaussian_kde(tsigs) yd = kde.pdf(kde_x) mins = findmins(kde_x, yd) # find minima in kde if len(mins) > 0: bkg = tsigs < (mins[0]) # set background as lowest distribution else: bkg = np.ones(tsigs.size, dtype=bool) # bkg[0] = True # the first value must always be background else: bkg = tsigs < thresh # assign rough background and signal regions based on kde minima fbkg = bkg fsig = ~bkg # remove transitions by fitting a gaussian to the gradients of # each transition # 1. determine the approximate index of each transition zeros = bool_2_indices(fsig) # 2. calculate the absolute gradient of the target trace. g = abs(fastgrad(sigs, gwin)) # gradient of untransformed data. if zeros is not None: zeros = zeros.flatten() for z in zeros: # for each approximate transition # isolate the data around the transition if z - win < 0: lo = gwin // 2 hi = int(z + win) elif z + win > (len(sig) - gwin // 2): lo = int(z - win) hi = len(sig) - gwin // 2 else: lo = int(z - win) hi = int(z + win) xs = t[lo:hi] ys = g[lo:hi] # determine type of transition (on/off) mid = (hi + lo) // 2 tp = sigs[mid + 3] > sigs[mid - 3] # True if 'on' transition. # fit a gaussian to the first derivative of each # transition. Initial guess parameters: # - A: maximum gradient in data # - mu: c # - width: 2 * time step # The 'sigma' parameter of curve_fit: # This weights the fit by distance from c - i.e. data closer # to c are more important in the fit than data further away # from c. This allows the function to fit the correct curve, # even if the data window has captured two independent # transitions (i.e. end of one ablation and start of next) # ablation are < win time steps apart). c = t[z] # center of transition width = (t[1] - t[0]) * 2 try: pg, _ = curve_fit(gauss, xs, ys, p0=(np.nanmax(ys), c, width), sigma=(xs - c)**2 + .01) # get the x positions when the fitted gaussian is at 'conf' of # maximum # determine transition FWHM fwhm = abs(2 * pg[-1] * np.sqrt(2 * np.log(2))) # apply on_mult or off_mult, as appropriate. if tp: lim = np.array([-fwhm, fwhm]) * on_mult + pg[1] else: lim = np.array([-fwhm, fwhm]) * off_mult + pg[1] fbkg[(t > lim[0]) & (t < lim[1])] = False fsig[(t > lim[0]) & (t < lim[1])] = False except RuntimeError: failed.append([c, tp]) pass ftrn = ~fbkg & ~fsig # if there are any failed transitions, exclude the mean transition width # either side of the failures if len(failed) > 0: trns = t[bool_2_indices(ftrn)] tr_mean = (trns[:, 1] - trns[:, 0]).mean() / 2 for f, tp in failed: if tp: ind = (t >= f - tr_mean * on_mult[0]) & (t <= f + tr_mean * on_mult[0]) else: ind = (t >= f - tr_mean * off_mult[0]) & (t <= f + tr_mean * off_mult[0]) fsig[ind] = False fbkg[ind] = False ftrn[ind] = False return fbkg, fsig, ftrn, [f[0] for f in failed]
[docs]def autorange_components(t, sig, transform='log', gwin=7, swin=None, win=30, on_mult=(1.5, 1.), off_mult=(1., 1.5), thresh=None): """ Returns the components underlying the autorange algorithm. Returns ------- t : array-like Time axis (independent variable) sig : array-like Raw signal (dependent variable) sigs : array-like Smoothed signal (swin) tsig : array-like Transformed raw signal (transform) tsigs : array-like Transformed smoothed signal (transform, swin) kde_x : array-like kernel density estimate of smoothed signal. yd : array-like bins of kernel density estimator. g : array-like gradient of smoothed signal (swin, gwin) trans : dict per-transition data. thresh : float threshold identified from kernel density plot """ failed = [] # smooth signal if swin is not None: sigs = fastsmooth(sig, swin) else: sigs = sig # transform signal if transform == 'log': tsigs = np.log10(sigs) tsig = np.log10(sig) else: tsigs = sigs tsig = sig if thresh is None: bins = 50 kde_x = np.linspace(tsigs.min(), tsigs.max(), bins) kde = gaussian_kde(tsigs) yd = kde.pdf(kde_x) mins = findmins(kde_x, yd) # find minima in kde if len(mins) > 0: bkg = tsigs < (mins[0]) # set background as lowest distribution thresh = mins[0] else: bkg = np.ones(tsigs.size, dtype=bool) else: bkg = tsigs < thresh # assign rough background and signal regions based on kde minima fbkg = bkg fsig = ~bkg # remove transitions by fitting a gaussian to the gradients of # each transition # 1. determine the approximate index of each transition zeros = bool_2_indices(fsig) # 2. calculate the absolute gradient of the target trace. g = abs(fastgrad(sigs, gwin)) # gradient of untransformed data. if zeros is not None: zeros = zeros.flatten() trans = dict(zeros=zeros.flatten(), lohi=[], pgs=[], excl=[], tps=[], failed=[], xs=[], ys=[]) for z in zeros: # for each approximate transition # isolate the data around the transition if z - win < 0: lo = gwin // 2 hi = int(z + win) elif z + win > (len(sig) - gwin // 2): lo = int(z - win) hi = len(sig) - gwin // 2 else: lo = int(z - win) hi = int(z + win) xs = t[lo:hi] ys = g[lo:hi] trans['xs'].append(xs) trans['ys'].append(ys) trans['lohi'].append([lo, hi]) # determine type of transition (on/off) mid = (hi + lo) // 2 tp = sigs[mid + 3] > sigs[mid - 3] # True if 'on' transition. trans['tps'].append(tp) c = t[z] # center of transition width = (t[1] - t[0]) * 2 # initial width guess try: pg, _ = curve_fit(gauss, xs, ys, p0=(np.nanmax(ys), c, width), sigma=(xs - c)**2 + .01) trans['pgs'].append(pg) fwhm = abs(2 * pg[-1] * np.sqrt(2 * np.log(2))) # apply on_mult or off_mult, as appropriate. if tp: lim = np.array([-fwhm, fwhm]) * on_mult + pg[1] else: lim = np.array([-fwhm, fwhm]) * off_mult + pg[1] trans['excl'].append(lim) fbkg[(t > lim[0]) & (t < lim[1])] = False fsig[(t > lim[0]) & (t < lim[1])] = False failed.append(False) except RuntimeError: failed.append(True) trans['lohi'].append([np.nan, np.nan]) trans['pgs'].append([np.nan, np.nan, np.nan]) trans['excl'].append([np.nan, np.nan]) trans['tps'].append(tp) pass else: zeros = [] return t, sig, sigs, tsig, tsigs, kde_x, yd, g, trans, thresh