latools Documentation
Release 0.3.4-submission

Oscar Branson

Mar 20, 2018

Contents

1 Overview 3
LT UserGuide o o e e e e 3
1.1.1 StartHere! e 3

1.1.2 Introduction o L e e e e e e e e e e e e 3
1.1.2.1 Why Use latools? e 3

1.1.2.2 Very Important Warning i v v it e e e e e 4

1.1.2.3 Overview: Understand latools oo v i i v v it 4

1.1.2.4 Wherenext? e e e 5

1.1.3 Installation L o e e e e e e e e e e 5
1.1.3.1 Prerequisite: Python 5

1.1.3.2 Installing 1atools o oo ittt e e e 6

1.1.33 0 NextSteps . . . v v v v e i e e e e e e e e e e e e e e e e e 6

[.1.4 Beginner’'sGuide e 6
1.14.1 Getting Started 6

1.142 TImportingData. L 8

1.1.43 Plotting o e e e e e e 9

1.1.44 DataDe-spiking e e e e e 9

1.1.4.5 Background Correction v it e e e e 10

1.14.6 RatioCalculation 12

1.1.477 Calibration e e e e e e e e e 13

1.1.4.8 Data Selection and Filtering 14

1.1.49 Sample StatistiCS v v v v e e e e e e e e e e e e 20

1.1.4.10 Reproducibility e e e 21

L1411 Summaryo o e e e 22

1.1.4.12 FAQS . . . o o o e 23

1.1.4.13 Example Analyses e e 24

1.1.5 Configuration Guide L e e 24
1.1.5.1 Three Steps to Configuration o v vt v it 24

1.1.5.2 DataFormats 25

1.1.53 TheSRMFile 30

1.1.5.4 Managing Configurations 31

2 Function Documentation 35
2.1 LAtools Documentation e e e e e e e e e 35
2.1.1 latools.analyse object e 35

2.1.2 latools.Dobject e 53

2.1.3 Filtering e e e e e e 62

2.1.4 Configuration o e e e e e e e e e e e e e e e 69
2.1.5 Helpers e e e e e e 70
3 Indices and tables 81
Python Module Index 83

latools Documentation, Release 0.3.4-submission

LAtools: a Python toolbox for processing Laser Ablations Mass Spectrometry (LA-MS) data.

Contents 1

latools Documentation, Release 0.3.4-submission

2 Contents

CHAPTER 1

Overview

1.1 User Guide

1.1.1 Start Here!

If you’re completely new to LAtools (and Python!?), these are the steps you need to follow to get going.
1. Install Python and LAtools.
2. Go through the Begginners Guide example data analysis.
3. Configure LAtools for your system.

And you’re done!

If you run into problems with the software or documentation, please let us know.

1.1.2 Introduction

Laser Ablation Tools (1atools) is a Python toolbox for processing Laser Ablations Mass Spectrometry (LA-MS)
data.

1.1.2.1 Why Use latools?

At present, most LA-MS data requires a degree of manual processing. This introduces subjectivity in data analysis,
and independent expert analysts can obtain significantly different results from the same raw data. At present, there is
no standard way of reporting LA-MS data analysis, which would allow an independent user to obtain the same results
from the same raw data. latools is designed to tackle this problem.

latools automatically handles all the routine aspects of LA-MS data reduction:
1. Signal De-spiking
2. Signal / Background Identification

https://groups.google.com/forum/#!forum/latools

latools Documentation, Release 0.3.4-submission

3. Background Subtraction
4. Normalisation to internal standard
5. Calibration to SRMs

These processing steps perform the same basic functions as other LA-MS processing software. If your end goal is
calibrated ablation profiles, these can be exported at this stage for external plotting an analysis. The real strength of
latools comes in the systematic identification and removal of contaminant signals, and calculation of integrated
values for ablation spots. This is accomplished with two significant new features.

6. Systematic data selection using quantitative data selection filfers.
7. Analyses can be fully reproduced by independent users through the export and import of analytical sessions.

These features provide the user with systematic tools to reduce laser ablation profiles to per-ablation integrated av-
erages. At the end of processing, latools can export a set of parameters describing your analysis, along with a
minimal dataset containing the SRM table and all raw data required to reproduce your analysis (i.e. only analytes
explicitly used during processing).

1.1.2.2 Very Important Warning

If used correctly, 1atools will allow the high-throughput, semi-automated processing of LA-MS data in a system-
atic, reproducible manner. Because it is semi-automated, it is very easy to treat it as a ‘black box’. You must not
do this. The data you get at the end will only be valid if processed appropriately. Because latools brings repro-
ducibility to LA-MS processing, it will be very easy for peers to examine your data processing methods, and identify
any shortfalls. In essence: to appropriately use 1atools, you must understand how it works!

The best way to understand how it works will be to play around with data processing, but before you do that there are
a few things you can do to start you off in the right direction:

1. Read and understand the following ‘Overview’ section. This will give you a basic understanding of the archi-
tecture of latools, and how its various components relate to each other.

2. Work through the ‘Getting Started’ guide. This takes you step-by-step through the analysis of an example
dataset.

3. Be aware of the extensive documentation that describes the action of each function within latools, and tells
you what each of the input parameters does.

1.1.2.3 Overview: Understand latools

latools is a Python ‘module’. You do not need to be fluent in Python to understand 1atools, as understanding
what each processing step does to your data is more important than how it is done. That said, an understanding of
Python won’t hurt!

Architecture

The 1atools module contains two core ‘objects’ that interact to process LA-MS data:

* latools.D is the most ‘basic’ object, and is a ‘container’ for the data imported from a single LA-MS data
file.

* latools.analyse is a higher-level object, containing numerous latools.D objects. This is the object
you will interact with most when processing data, and it contains all the functions you need to perform your
analysis.

4 Chapter 1. Overview

latools Documentation, Release 0.3.4-submission

This structure reflects the hierarchical nature of LA-MS analysis. Each ablation contains an measurements of a single
sample (i.e. the ‘D’ object), but data reduction requires consideration of multiple ablations of samples and standards
collected over an analytical session (i.e. the ‘analyse’ object). In line with this, some data processing steps (de-spiking,
signal/background identification, normalisation to internal standard) can happen at the individual analysis level (i.e.
within the 1atools.D object), while others (background subtraction, calibration, filtering) require a more holistic
approach that considers the entire analytical session (i.e. at the latools.analyse level).

How it works

In practice, you will do all data processing using the 1atools.analyse object, which contains all the data process-
ing functionality you’ll need. To start processing data, you create an latools.analyse object and tell it which
folder your data are stored in. latools.analyse then imports all the files in the data folder as 1atools.D ob-
jects, and labels them by their file names. The 1atools.analyse object contains all of the 1atools.D objects
withing a ‘dictionary’ called latools.analyse.data_dict, where the each individual 1atools.D object can
be accessed via its name. Data processing therefore works best when ablations of each individual sample or standard
are stored in a single data folder, named according to what was measured.

Todo: In the near future, latools will also be able to cope with multiple ablations stored in a single, long data file,
as long as a list of sample names is provided to identify each ablation.

When you’re performing a processing step that can happen at an individual-sample level (e.g. de-spiking), the
latools.analyse object passes the task directly on to the 1atools.D objects, whereas when you’re performing
a step that requires consideration of the entire analytical session (e.g. calibration), the 1latools.analyse ob-
ject will coordinate the interaction of the different Latools.D objects (i.e. calculate calibration curves from SRM
measurements, and apply them to quantify the compositions of your unknown samples).

Filtering

Finally, there is an additional ‘object’ attached to each latools.D object, specifically for handling data filtering.
This 1latools.filt object contains all the information about filters that have been calculated for the data, and
allows you to switch filters on or off for individual samples, or subsets of samples. This is best demonstrated by
example, so we’ll return to this in more detail in the Data Selection and Filtering section of the Beginner’s Guide

1.1.2.4 Where next?

Hopefully, you now have a rudimentary understanding of how latools works, and how it’s put together. To start
using latools, install it on your system, then work through the step-by-step example in the Beginner’s Guide guide
to begin getting to grips with how latools works. If you already know what you’re doing and are looking for more
in-depth information, head to advanced_topics, or use the search bar in the top left to find specific information.

1.1.3 Installation
1.1.3.1 Prerequisite: Python

Before you install 1atools, you’ll need to make sure you have a working installation of Python, preferably version
3.5+. If you don’t already have this (or are unsure if you do), we recommend that you install one of the pre-packaged
science-oriented Python distributions, like Continuum’s Anaconda. This provides a working copy of Python, and most
of the modules that 1atools relies on.

1.1. User Guide 5

https://www.continuum.io/downloads

latools Documentation, Release 0.3.4-submission

If you already have a working Python installation or don’t want to install one of the pre-packaged Python distributions,
everything below should work.

Tip: Make sure you set the Anaconda Python installation as the system default, or you are working in a virtual
environment that uses the correct Python version. If you don’t know what a virtual environment’ is, don’t worry - just
make sure you check the box saying ‘make this my default Python’ at the appropriate time when installing Anaconda.

1.1.3.2 Installing 1atools

There are two ways to install latools. We recommend the first method, which will allow you to easily keep your
installation of 1atools up to date with new developments.

1. Using pip

pip install latools

2. Using conda

Coming soon. ..

1.1.3.3 Next Steps

If this is your first time, read through the Gerting Started guide. Otherwise, get analysing!

1.1.4 Beginner’s Guide

1.1.4.1 Getting Started

This guide will take you through the analysis of some example data included with 1atools, with explanatory notes
telling you what the software is doing at each step. We recommend working through these examples to understand the
mechanics of the software before setting up your Three Steps to Configuration, and working on your own data.

The Fundamentals: Python

Python is an open-source (free) general purpose programming language, with growing application in science.
latools is a python module - a package of code containing a number of Python objects and functions, which
run within Python. That means that you need to have a working copy of Python to use latools.

If you don’t already have this (or are unsure if you do), we recommend that you install one of the pre-packaged
science-oriented Python distributions, like Continuum’s Anaconda (recommended). This provides a complete working
installation of Python, and all the pre-requisites you need to run latools.

latools has been developed and tested in Python 3.5. It should also run on 2.7, but we can’t guarantee that it will
behave.

“latools” should work in any python interpreter, but we recommend either Jupyter Notebook or iPython. Jupyter is a
browser-based interface for ipython, which provides a nice clean interactive front-end for writing code, taking notes
and viewing plots.

6 Chapter 1. Overview

https://www.python.org/
https://www.continuum.io/downloads
http://jupyter.org/
https://ipython.org/

latools Documentation, Release 0.3.4-submission

For simplicity, the rest of this guide will assume you’re using Jupyter notebook, although it should translate directly
to other Python interpreters.

For a full walk through of getting 1atools set up on your system, head on over to the Installation guide.

Preparation

Before we start latools, you should create a folder to contain everything we’re going to do in this guide.
For example, you might create a folder called 1atools_demo/ on your Desktop - we’ll refer to this folder as
latools_demo/ from now on, but you can call it whatever you want. Remember where this folder is - we’ll come
back to it a lot later.

Tip: As you process data with 1atools, new folders will be created in this directory containing plots and exported
data. This works best (i.e. is least cluttered) if you put your data in a single directory inside a parent directory (in this
case latools_demo), so all the directories created during analysis will also be in the same place, without lots of
other files.

Starting latools

Next, launch a Jupyter notebook in this folder. To do this, open a terminal window, and run:

cd ~/path/to/latools_demo/
jupyter notebook

This should open a browser window, showing the Jupyter main screen. From here, start a new Python notebook by
clicking ‘New’ in the top right, and selecting your Python version (preferably 3.5+). This will open a new browser tab
containing your Jupyter notebook.

Once python is running, import latools into your environment:

import latools as la

All the functions of latools are now accessible from within the 1a prefix.

Tip: if you want Jupyter notebook to display plots in-line (recommended), add an additional line after the import
statement: $matplotlib inline.

Tip: To run code in a Jupyter notebook, you must ‘evaluate’ the cell containing the code. to do this, type:
e [ctrl] + [return] evaluate the selected cell.
e [shift] + [return] evaluate the selected cell, and moves the focus to the next cell

e [alt] + [return] evaluate the selected cell, and creates a new empty cell underneath.

Example Data

Once you’ve imported 1atools, extract the example dataset to a data/ folder within latocols_demo/:

1.1. User Guide 7

latools Documentation, Release 0.3.4-submission

la.get_example_data('./data')

Take a look at the contents of the directory. You should see four .csv files, which are raw data files from an Agilent
7700 Quadrupole mass spectrometer, outputting the counts per second of each analyte as a function of time. Notice
that each .csv file either has a sample name, or is called ‘STD’.

Note: Each data file should contain data from a single sample, and data files containing measurements of standards
should all contain an identifying set of characters (in this case ‘STD’) in the name. For more information, see Data
Formats.

1.1.4.2 Importing Data

Once you have Python running in your latools_demo/ directory and have unpacked the Example Data, you're
ready to start an 1atools analysis session. To do this, run:

eg = la.analyse(data_folder="'./data/"',
config='DEFAULT',
internal_standard='Ca43"',
srm_identifier='STD")

This imports all the data files within the data/ folder into an latools.analyse object called eg, along with
several parameters describing the dataset and how it should be imported:

* config='DEFAULT': The configuration contains information about the data file format and the location of
the SRM table. Multiple configurations can be set up and chosen during data import, allowing latools to
flexibly work with data from different instruments.

e internal_standard='Ca43': This specifies the internal standard element within your samples. The
internal standard is used at several key stages in analysis (signal/background identification, normalisation), and
should be relatively abundant and homogeneous in your samples.

e srm_identifier='STD"': This identifies which of your analyses contain standard reference materials
(SRMs). Any data file with ‘STD’ in its name will be flagged as an SRM measurement.

If it has worked correctly, you should see the output:

latools analysis using "DEFAULT" configuration:
5 Data Files Loaded: 2 standards, 3 samples
Analytes: Mg24 Mg25 Al27 Cad43 Ca44 Mnb55 Sr88 Bal37 Bal38
Internal Standard: Caé43

In this output, Latools reports that 5 data files were imported from the data/ directory, two of which were stan-
dards (names contained ‘STD’), and tells you which analytes are present in these data. Each of the imported data files
is stored in a 1atools.D object, which are ‘managed’ by the 1atools.analyse object that contains them.

Check inside the latools_demo directory. There should now be two new folders called reports_data/ and
export_data/ alongside the data/ folder. Note that the ‘_data’ suffix will be the same as the name of the folder
that contains your data - i.e. the names of these folders will change, depending on the name of your data folder.
latools saves data and plots to these folders throughout analysis:

* data_export will contain exported data: traces, per-ablation averages and minimal analysis exports.

* data_reports will contain all plots generated during analysis.

8 Chapter 1. Overview

latools Documentation, Release 0.3.4-submission

1.1.4.3 Plotting

Danger: Because latools offers the possibility of high-throughput analyses, it will be tempting to use it as an
analytical ‘black box’. DO NOT DO THIS. It is vital to keep track of your data, and make sure you understand
the processing being applied to it. The best way of doing this is by looking at your data.

The main way to do this in latools is to Plot all your data, or subsets of samples and analytes, at any stage
of analysis using trace_plots (). The resulting plots are saved as pdfs in the reports_data folder created
during import, in a subdirectory labelled as the analysis stage. For example, making plots now will create 5 plots in a
subdirectory called rawdata:

eg.trace_plots ()

Tip: Plot appearance can be modified by specifying a range of parameters in this function. This will be used to some
extent later in this tutorial, but see trace_plots () documentation for more details.

By default all analytes from the most recent stage of analysis are plotted on a log scale, and the plot should look
something like this:

Sample-3 : rawdata

Mg24
—— Mg25
Al27
—— Cad43
Cad4
— Mn55
Srg8

‘ —— Bal37
‘WW Bal38

107 4

106 4

10° 4

104 N

counts

103 4

107 4

Ar!lu 1"
5I0 160 1..;10 200

Time (s)

101 4

Once you’ve had a look at your data, you’re ready to start processing it.

1.1.4.4 Data De-spiking

The first step in data reduction is the ‘de-spike’ the raw data to remove physically unrealistic outliers from the data
(i.e. higher than is physically possible based on your system setup).

Two de-spiking methods are available:

* expdecay_despiker () removes low outliers, based on the signal washout time of your laser cell. The
signal washout is described using an exponential decay function. If the measured signal decreases faster than
physically possible based on your laser setup, these points are removed, and replaced with the average of the
adjacent values.

* noise_despiker () removes high outliers by calculating a rolling mean and standard deviation, and re-
placing points that are greater than n standard deviations above the mean with the mean of the adjacent data
points.

1.1. User Guide 9

latools Documentation, Release 0.3.4-submission

These functions can both be applied at once, using despike ():

eg.despike (expdecay_despiker=True,
noise_despiker=True)

By default, this applies expdecay_despiker () followed by noise_despiker () to all samples. You can
specify several parameters that change the behaviour of these de-spiking routines.

The expdecay_despiker () relies on knowing the exponential decay constant that describes the washout charac-
teristics of your laser ablation cell. If this values is missing (as here), lat ools calculates it by fitting an exponential
decay function to the internal standard at the on-off laser transition at the end of ablations of standards. If this has been
done, you will be informed. In this case, it should look like:

Calculating exponential decay coefficient
from SRM Ca43 washouts...
-2.28

Tip: The exponential decay constant used by expdecay_despiker () will be specific to your laser setup. If
you don’t know what this is, despike () determines it automatically by fitting an exponential decay function to the
washout phase of measured SRMs in your data. You can look at this fit by passing exponent_plot=True to the
function.

1.1.4.5 Background Correction

The de-spiked data must now be background-corrected. This involves three steps:
1. Signal and background identification.
2. Background calculation underlying the signal regions.

3. Background subtraction from the signal.

Signal / Background Separation

This is achieved automatically using autorange () using the internal standard (Ca43, in this case), to discriminate
between ‘laser off” and ‘laser on’ regions of the data. Fundamentally, ‘laser on’ regions will contain high counts, while
‘laser off” will contain low counts of the internal standard. The mid point between this high and low offers a good
starting point to approximately identify ‘signal’ and ‘background’ regions. Regions in the ablation with higher counts
than the mid point are labelled ‘signal’, and lower are labelled ‘background’. However, because the transition between
laser-on and laser-off is not instantaneous, both signal and background identified by this mid-point will contain part
of the ‘transition’, which must be excluded from both signal and background. This is accomplished by a simple
algorithm, which determines the width of the transition and excludes it:

1. Extract each approximate transition, and calculate the first derivative. As the transition is approximately sig-
moid, the first derivative is approximately Gaussian.

2. Fit a Gaussian function to the first derivative to determine its width. This fit is weighted by the distance from
the initial transition guess.

3. Exclude regions either side of the transitions from both signal and background regions, based on the full-width-
at-half-maximum (FWHM) of the Gaussian fit. The pre- and post-transition exclusion widths can be specified
independently for ‘off-on’ and ‘on-off” transitions.

Several parameters within autorange () can be modified to subtly alter the behaviour of this function. However, in
testing the automatic separation proved remarkably robust, and you should not have to change these parameters much.

10 Chapter 1. Overview

latools Documentation, Release 0.3.4-submission

The function is applied to your data by running:

eg.autorange (on_mult=[1.5, 0.8],
off mult=[0.8, 1.5])

In this case, on_mult=[1.5, 0.8] signifiesthata 1.5 x FWHM of the transition will be removed before the off-on
transition (on the ‘background’ side), and 0.8 x FWHM will be removed affer the transition (on the ‘signal’ side), and
vice versa for the on-off transition. This excludes more from the background than the signal, avoiding spuriously high
background values caused by the tails of the signal region.

Tip: Look at your data! You can see the regions identified as ‘signal’ and ‘background’ by this algorithm by
plotting your data using eg.trace_plots (ranges=True). Because the analysis has progressed since the last
time you plotted (the data have been de-spiked), these plots will be saved in a new de—spiked sub-folder within
the reports_data folder. This will produce plots with ‘signal’ regions highlighted in red, and ‘background’ high-
lighted in grey:

107 Sample-3 : despiked Mg24

— Mg25
106 i Al27
S — Ca43

Cad4

=~ Mn55
Srg88

WAW W | —— Bal37

| \‘ Bal38
meﬂ WW&\WWW
| ‘lul\l' \‘ nnu\""“

50 100 150 200
Time (s)

105 .

104 i

counts

103 4

102 4

10?1

Background Calculation

Once the background regions of the ablation data have been identified, the background underlying the signal regions
must be calculated. At present, latools includes two background calculation algorithms:

* bkg_calc_interpld () fits a polynomial function to all background regions, and calculates the intervening
background values using a 1D interpolation (numpy’s interp1D function). The order of the polynomial can be
specified by the ‘kind’ variable, where kind=0 simply interpolates the mean background forward until the next
measured background region.

* bkg_calc_weightedmean () calculates a Gaussian-weighted moving average, such that the interpolated
background at any given point is determined by adjacent background counts on either side of it, with the closer
(in Time) being proportionally more important. The full-width-at-half-maximum (FWHM) of the Gaussian
weights must be specified, and should be greater than the time interval between background measurements, and
less than the time-scale of background drift expected on your instrument.

Warning: Use extreme caution with polynomial backgrounds of order>1. You should only use this if you
know you have significant non-linear drift in your background, which you understand but cannot be dealt with by
changing you analytical procedure. In all tested cases the weighted mean background outperformed the polynomial
background calculation method.

1.1. User Guide 11

latools Documentation, Release 0.3.4-submission

Note: Other background fitting functions can be easily incorporated. If you're Python-literate, we welcome your
contributions. If not, get in touch!

For this demonstration, we will use the bkg_calc_weightedmean () background, with a FWHM of 5 min-
utes (weight_fwhm=300 seconds), that only considers background regions that contain greater than 10 points
(n_min=10):

eg.bkg_calc_weightedmean (weight_fwhm=300,
n_min=10)

and plot the resulting background:

eg.bkg_plot ()

which is saved in the reports_data subdirectory, and should look like this:

Points = raw data; Bars = stderr; Lines = Calculated Background; Envelope = Background stderr

=] =] N))
: & H B
10% 40 ,% e LE | — Mg25
— 1] 7 = ¢ - AI27
| —— Ca43
{ 1 1 Cad4
103 4 [—— Mn55

sres
e ¢ g } - { — Ba137
= L | 4 .. : |] Bal38

102 4

Background Counts

10! 4

100 4

0 200 400 600 800 1000 1200
Time (s)

Background Subtraction

Once the background is calculated, it subtracted from the signal regions using bkg_correct ():

eg.bkg_subtract ()

Tip: Remember that you can plot the data and examine it at any stage of your processing. running eg.
trace_plot () now would create a new subdirectory called ‘bkgcorrect’ in your ‘reports_data’ directory, and plot
all the background corrected data.

1.1.4.6 Ratio Calculation

Next, you must normalise your data to an internal standard, using ratio ():

eg.ratio()

12 Chapter 1. Overview

latools Documentation, Release 0.3.4-submission

The internal standard is specified during data import, but can also be changed here by specifying
internal_standard in ratio (). In this case, the internal standard is Ca43, so all analytes are divided by
Ca43.

Note: latools works entirely in ratios from here on. This avoids cumbersome assumptions regarding bulk sample
composition required to attain absolute analyte concentrations, and makes processing and error propagation numeri-
cally simpler. If you require absolute concentrations, these may be calculated from the ratio values at the end of data
processing, as long as you know the concentration of the internal standard in your samples.

1.1.4.7 Calibration

Once all your data are normalised to an internal standard, you’re ready to calibrate the data. This is done by creating
a calibration curve for each element based on SRMs measured throughout your analysis session, and a table of known
SRM values. You can either calculate a single calibration from a combination of all your measured standards, or
generate a time-sensitive calibration to account for sensitivity drift through an analytical session. The latter is achieved
by creating a separate calibration curve for each element in each SRM measurement, and linearly extrapolating these
calibrations between neighbouring standards.

Calibration is performed using the calibrate () method:

eg.calibrate(drift_correct=False,
srms_used=['NIST610', 'NIST612', 'NIST614'])

In this simple example case, our analytical session is very short, so we are not worried about sensitivity drift
(drift_correct=False). poly_n=0 is fitting a polynomial calibration line to the data that is forced through
zero. Changing this number alters the order of polynomial used during calibration. Because of the wide-scale linearity
of ICPM-MS detectors, poly_n=0 should normally provide an adequate calibration line. If it does not, it suggests
that either one of your ‘known’ SRM values may be incorrect, or there is some analytical problem that needs to be
investigated (e.g. interferences from other elements). Finally, srms_used contains the names of the SRMs measured
throughout analysis. The SRM names you give must exactly (case sensitive) match the SRM names in the SRM table.

Note: For calibration to work, you must have an SRM table containing the element/internal_standard ratios of the
standards you’ve measured, whose location is specified in the latools configuration. You should only need to do this
once for your lab, but it’s important to ensure that this is done correctly. For more information, see the 7Three Steps to
Configuration section.

First, 1lat ools will automatically determine the identity of measured SRMs throughout your analysis session using a
relative concentration matrix (see SRM Identification section for details). Once you have identified the SRMs in your
standards, latools will import your SRM data table (defined in the configuration file), calculate a calibration curve
for each analyte based on your measured and known SRM values, and apply the calibration to all samples.

The calibration lines for each analyte can be plotted using:

eg.calibration_plot ()

Which should look something like this:

1.1. User Guide 13

latools Documentation, Release 0.3.4-submission

0.010 A -7 0.010 A -7 0.10 1

2“Mg > 25Mg o . 27p1 ; e
// // //
0.008 A 7 1 0.008 A e 1 0.08 A L
8 e 8 - 8 -
2 0.006 I 3 0.006 1 L7 < 0.06 1 L7
£ .~ £ .~ £ o
2 0.004 4 et 2 0.004 4 I 2 0.04 ot
// ,/ //
. .
0.002 - .77y = (6.29+/-0.04)e-03 x] 0.002 1 o ¥ =1(4.59+/-0.03)e-02 x] 0.02 1 7"y = (2.86+/-0.00)e-03 x]
o R2: >0.999 P R2: 0.999 et R2: 0.015
0.000 T T T 0.000 T T T T 0.00 T T T
0.0 0.5 1.0 1.5 0.00 0.05 0.10 0.15 0.20 0 10 20 30
counts/counts Ca counts/counts Ca counts/counts Ca
0.0044 55Mn pid 0.003 1 88g, 71 1375 "
e 7 0.0015 - o0
/’ /, /,
0.003 A 4 1 , .
8 ot 8 0.002 4 et E 8 ot
5 "e 5 L 3 0.0010 e
£ 0002 It £ e = s
e 4 4
c el © 0.001 el 1 ® 0.00051 el 1
0-0011 7y (1.16+/-0.00)e-03 x| 7y = (5.31+/-0.00)e-04 x 7y = (2.44+/:0.00)e-03 x
ya R2: >0.999 2 R2: >0.999 o R2: >0.999
0.000 T T . 0.000 T T 0.0000 + T T T
0 1 2 3 0 2 4 6 0.0 0.2 0.4 0.6
counts/counts Ca counts/counts Ca counts/counts Ca
1ssBa . Rd
0.0015 - R
e
L
© .
o 7
3 0.0010 A "
1S ’
£ .
g 7
0.0005 - L7 1
7"y =(3.81+/-0.00)e-04 x
ot R2: >0.999
0.0000 + r . . .
0 1 2 3 4

counts/counts Ca

Where each panel shows the measured counts/count (x axis) vs. known mol/mol (y axis) for each analyte with asso-
ciated errors, with the fitted calibration line, equation and R2 of the fit. The axis on the right of each panel contains a
histogram of the raw data from each sample, showing where your sample measurements lie compared to the range of
the standards.

1.1.4.8 Data Selection and Filtering

The data are now background corrected, normalised to an internal standard, and calibrated. Now we can get into some
of the new features of 1atools, and start thinking about data filtering.

What is Data Filtering?

Laser ablation data are spatially resolved. In heterogeneous samples, this means that the concentrations of different
analytes will change within a single analysis. This compositional heterogeneity can either be natural and expected (e.g.
Mg/Ca variability in foraminifera), or caused by compositionally distinct contaminant phases included in the sample
structure. If the end goal of your analysis is to get integrated compositional estimates for each ablation analysis,
how you deal with sample heterogeneity becomes central to data processing, and can have a profound effect on the
resulting integrated values. So far, heterogeneous samples tend to be processed manually, by choosing regions to
integrate by eye, based on a set of criteria and knowledge of the sample material. While this is a valid approach to
data reduction, it is not reproducible: if two ‘expert analysts’ were to process the data, the resulting values would not
be quantitatively identical. Reproducibility is fundamental to sound science, and the inability to reproduce integrated
values from identical raw data is a fundamental flaw in Laser Ablation studies. In short, this is a serious problem.

To get round this, we have developed ‘Data Filters’. Data Filters are systematic selection criteria, which can be
applied to all samples to select specific regions of ablation data for integration. For example, the analyst might apply
a filter that removes all regions where a particular analyte exceeds a threshold concentration, or exclude regions
where two contaminant elements co-vary through the ablation. Ultimately, the choice of selection criteria remains
entirely subjective, but because these criteria are quantitative they can be uniformly applied to all specimens, and most

14 Chapter 1. Overview

latools Documentation, Release 0.3.4-submission

importantly, reported and reproduced by an independent researcher. This removes significant possibilities for ‘human
error’ from data analysis, and solves the long-standing problem of reproducibility in LA-MS data processing.

Data Filters

latools includes several filtering functions, which can be created, combined and applied in any order, repetitively
and in any sequence. By their combined application, it should be possible to isolate any specific region within the data
that is systematically identified by patterns in the ablation profile. These filter are (in order of increasing complexity):

e filter_threshold(): Creates two filter keys identifying where a specific analyte is above or below a
given threshold.

e filter_distribution (): Finds separate populations within the measured concentration of a single an-
alyte within by creating a Probability Distribution Function (PDF) of the analyte within each sample. Local
minima in the PDF identify the boundaries between distinct concentrations of that analyte within your sample.

e filter_clustering(): A more sophisticated version of filter_distribution (), which uses data
clustering algorithms from the sklearn module to identify compositionally distinct ‘populations’ in your data.
This can consider multiple analytes at once, allowing for the robust detection of distinct compositional zones in
your data using n-dimensional clustering algorithms.

e filter_correlation (): Finds regions in your data where two analytes correlate locally. For example, if
your analyte of interest strongly co-varies with an analyte that is a known contaminant indicator, the signal is
likely contaminated, and should be discarded.

It is also possible to ‘train’ a clustering algorithm based on analyte concentrations from all samples, and then apply it
to individual filters. To do this, use:

e fit_classifier (): Uses a clustering algorithm based on specified analytes in all samples (or a subset) to
identify separate compositions within the entire dataset. This is particularly useful if (for example) all samples
are affected by a contaminant with a unique composition, or the samples contain a chemical ‘label’ that identifies
a particular material. This will be most robustly identified at the whole-analysis level, rather than the individual-
sample level.

* apply_classifier (): Applies the classifier fitted to the entire dataset to all samples individually. Creates
a sample-level filter using the classifier based on all data.

For a full account of these filters, how they work and how they can be used, see advanced_filtering.

Simple Demonstration
Choosing a filter

The foraminifera analysed in this example dataset are from culture experiments and have been thoroughly cleaned.
There should not be any contaminants in these samples, and filtering is relatively straightforward. The first step in
choosing a filter is to look at the data. You can look at the calibrated profiles manually to get a sense of the patterns in
the data (using trace_plots ()):

1.1. User Guide 15

http://scikit-learn.org/

latools Documentation, Release 0.3.4-submission

mol/mol Ca43

100 4

10—1 4

10724 W

1074
10744
1074
10-°

10-7 4

50

Sample-3 : calibrated,

] =) M924

— Mg25
Al27
—— Cad3

R NP 4 RNV Cad4

100

—— Mn55
5r88

—— Bal37
Bal38

150 200

Time (s)

Or alternatively, you can make a ‘crossplot’ (using eg.crossplot ()) of your data, to examine how all the trace
elements in your samples relate to each other:

16

Chapter 1. Overview

latools Documentation, Release 0.3.4-submission

o n o o
n — — o o~ < — o~
AR T ; . . 50
Mg24 i i M
9 r s Lo g
.] . oy
mmol/mol : Ii Z i L 10
2 i L byl [ie [
15 T] []]
| Mg25 % g
10 A mmol/mol i Pﬁ: a -
5 - - E 5
- 600
A27 | 400
pmol/mol
. L 200
|l - i o || || — |
40 -
Mn55
209 . pmol/mol =
: L3 i LI
i
0 -.ﬁ |l | |-
u . . Y L15
O o 0 B o= Sl
sr88
mmol/mol r1.o
|t = |- | |l | m— |maiees. [0.5
2 .
iy . Bal37 B
142 - - i j:;' umol/mol o
i 1 - '
2 - I i 1 Bal38
. 1 1.0
b " | o .;'lj = pmol/mol
. r,
| | , L 0.5
o wn
o

T
o
o~

10 A

T T T T
< \n \n <
— — [} —

250
500 -

This plots every analyte in your ablation profiles, plotted against every other analyte. The axes in each panel are
described by the diagonal analyte names. The colour intensity in each panel corresponds to the data density (i.e. it’s a
2D histogram!).

Within these plots, you should focus on the behaviour of ‘contaminant indicator’ elements, i.e. elements that are
normally within a known concentration range, or are known to be associated with a possible contaminant phase. As
these are foraminifera, we will pay particularly close attention to the concentrations of Al, Mn and Ba in the ablations,
which are all normally low and homogeneous in foraminifera samples, but are prone to contamination by clay particles.
In these samples, the Ba and Mn are relatively uniform, but the Al increases towards the end of each ablation. This is
because the tape that the specimens were mounted on contains a significant amount of Al, which is picked up by the
laser as it ablates through the shell. We know from experience that the tape tends to have very low concentration of
other elements, but to be safe we should exclude regions with hi Al/Ca from our analysis.

1.1. User Guide 17

latools Documentation, Release 0.3.4-submission

Creating a Filter

We wouldn’t expect cultured foraminifera to have a Al/Ca of ~100 umol/mol, so we therefore want to remove all data
from regions with an Al/Ca above this. We’ll do this with a threshold filter:

eg.filter_threshold(analyte="A127"', threshold=100e-6) # remember that all units are_
—1in mol/mol!

This goes through all the samples in our analysis, and works out which analyses have an Al/Ca both greater than and
less than 100 pmol/mol (remember, all units are in mol/mol at this stage). This function calculates the filters, but does
not apply them - that happens later. Once the filters are calculated, a list of filters and their current status is printed:

Subset All_Samples:
Samples: Sample-1, Sample-2, Sample-3

n Filter Name Mg24 Mg25 Al27 Ca43 Ca44 Mn55 Sr88 Bal37 Bal38
0 Al27_thresh_below False False False False False False False False False
1 Al27_thresh_above False False False False False False False False False

You can also check this manually at any time using:

eg.filter_status /()

This produces a grid showing the filter numbers, names, and which analytes they are active for (for each analyte False
= inactive, True = active). The filter_ threshold function has generated two filters: one identifying data above
the threshold, and the other below it. Finally, notice also that it says ‘Subset: All_Samples’ at the top, and lists which
samples they are. You can apply different filters to different subsets of samples... We’ll come back to this later. This
display shows all the filters you’ve calculated, and which analytes they are applied to.

Before we think about applying the filter, we should check what it has actually done to the data.

Note: Filters do not delete any data. They simply create a mask which tells latools functions which data to use, and
which to ignore.

Checking a Filter

You can do this in three ways:

1. Plot the traces, with £i1t=True. This plots the calibrated traces, with areas excluded by the filter shaded out
in grey. Specifying £i1t=True shows the net effect of all active filters. By setting £i1t as a number or filter
name, the effect of one individual filter will be shown.

2. Crossplot with £11t=True will generate a new crossplot containing only data that remains after filtering. This
can be useful for refining filter choices during multiple rounds of filtering. You can also set £i1t to be a filter
name or a number, as with trace plotting.

3. The most sophisticated way of looking at a filter is by creating a ‘filter_report’. This generates a plot of each
analysis, showing which regions are selected by particular filters:

eg.filter_reports (analytes="'A127"', filt_str='thresh')

Where analytes specifies which analytes you want to see the influence of the filters on, and £i1t_str identifies
which filters you want to see. £i1t_str supports partial filter name matching, so ‘thresh’ will pick up any filter with
‘thresh’ in the name - i.e. if you’d calculated multiple thresholds, it would plot each on a different plot. If all has gone
to plan, it will look something like this:

18 Chapter 1. Overview

latools Documentation, Release 0.3.4-submission

0.40 41 Sample-3: Al27_thresh) o excl
0.35 A e 0 _below
e 1 _above
0.30 4
= @
g 0.25 ° e
é K ° °
£ 0201 . s .
S 0.15 - @ o
5 & °
0.10 === = o O e
‘5 ; > o
0.05 - s 4
os L)
0.00 - ca ¢
0 25 50 75 100 125 150 175 200 O 20 40 60

Time (<)

In the case of a threshold filter report, the dashed line shows the threshold, and the legend identifies which data regions
are selected by the different filters (in this case ‘0_below’ or ‘1_above’). The reports for different types of filter are
slightly different, and often include numerous groups of data. In this case, the 100 pmol/mol threshold seems to do
a good job of excluding extraneously high Al/Ca values, so we’ll use the ‘0_AI27_thresh_below’ filter to select these

data.

Applying a Filter

Once you’ve identified which filter you want to apply, you must turn that filter ‘on’ using:

eg.filter_on(filt="Albelow")

Where £ilt can either be the filter number (corresponding to the ‘n’ column in the output of filter_status())
or a partially matching string, as here. For example, 'Albelow' is most similar to 'A127_thresh _below', so
this filter will be turned on. You could also specify 'below', which would turn on all filters with ‘below’ in the
name. This is done using ‘fuzzy string matching’, provided by the fuzzywuzzy package. There is also a counterpart
eg.filter_off () function, which works in the inverse. These functions will turn the threshold filter on for all
analytes measured in all samples, and return a report of which filters are now on or off:

Subset All_Samples:
Samples: Sample-1, Sample-2, Sample-3

n Filter Name Mg24 Mg25 Al27 Ca43 Cad4 Mnb55 Sr88 Bal37 Bal38
0 Al27_thresh_below True True True True True True True True True
1 Al27_thresh_above False False False False False False False False False

In some cases, you might have a sample where one analyte is effected by a contaminant that does not alter other
analytes. If this is the case, you can switch a filter on or off for a specific analyte:

eg.filter_off (filt='Albelow', analyte='Mg25")

Subset All_Samples:
Samples: Sample-1, Sample-2, Sample-3

n Filter Name Mg24 Mg25 Al27 Ca4d3 Ca4d4 Mn55 Sr88 Bal37 Bal38
0 Al27_thresh_below True False True True True True True True True
1 Al27_thresh_above False False False False False False False False False

Notice how the ‘Al27_thresh_below’ filter is now deactivated for Mg25.

1.1. User Guide 19

latools Documentation, Release 0.3.4-submission

Sample Subsets

Finally, let’s return to the ‘Subsets’, which we skipped over earlier. It is quite common to analyse distinct sets of
samples in the same analytical session. To accommodate this, you can create data ‘subsets’ during analysis, and treat
them in different ways. For example, imagine that ‘Sample-1’ in our test dataset was a different type of sample, that
needs to be filtered in a different way. We can identify this as a subset by:

eg.make_subset (samples='Sample-1"', name='setl')
eg.make_subset (samples=["'Sample-2"', 'Sample-3'], name='set2')

And filters can be turned on and off independently for each subset:

eg.filter_on(filt=0, subset='setl')

Subset setl:
Samples: Sample-1

n Filter Name Mg24 Mg25 Al27 Ca43 Ca4dd Mn55 Sr88 Bal37 Bal38
0 Al27_thresh_below True True True True True True True True True
1 Al27_thresh_above False False False False False False False False False

eg.filter off (filt=0, subset='set2')

Subset set2:
Samples: Sample-2, Sample-3

n Filter Name Mg24 Mg25 Al27 Ca43 Ca44 Mn55 Sr88 Bal37 Bal38
0 Al27_thresh_below False False False False False False False False False
1 Al27_thresh_above False False False False False False False False False

To see which subsets have been defined:

eg.subsets

{'All_Analyses': ['Sample-1', 'Sample-2', 'Sample-3', 'STD-1', 'STD-2'],

'All_Samples': ['Sample-1', 'Sample-2', 'Sample-3'],
"STD': ['STD-1', 'STD-2'],

'setl': ['Sample-1'],

'set2': ['Sample-2', 'Sample-3']}

Note: The filtering above is relatively simplistic. More complex filters require quite a lot more thought and care in
their application. For examples of how to use clustering, distribution and correlation filters, see the Advanced Filtering
section.

1.1.4.9 Sample Statistics

After filtering, you can calculated and export integrated compositional values for your analyses:

eg.sample_stats (stats=['mean', 'std'], filt=True)

Where stats specifies which functions you would like to use to calculate the statistics. Built in options are:

* 'mean': Arithmetic mean, calculated by np . nanmean.

20 Chapter 1. Overview

latools Documentation, Release 0.3.4-submission

* 'std': Arithmetic standard deviation, calculated by np . nanstd.
* 'se': Arithmetic standard error, calculated by np.nanstd / n.
* '"H15_mean': Huber (H15) robust mean.

e '"H15_std': Huber (H15) robust standard deviation.

e '"H15_se': Huber (H15) robust standard error.

e custom_fn (a): A function you’ve written yourself, which takes an array (a) and returns a single value. This
function must be able to cope with NaN values.

Where the Huber (H15) robust statistics remove outliers from the data, as described here.

You can specify any function that accepts an array and returns a single value here. £i1lt can either be True (applies
all active filters), or a specific filter number or partially matching name to apply a specific filter. In combination with
data subsets, and the ability to specify different combinations of filters for different subsets, this provides a flexible
way to explore the impact of different filters on your integrated values.

We’ve now calculated the statistics, but they are still trapped inside the ‘analyse’ data object (eg). To get them out
into a more useful form:

stats = eg.getstats()

This returns a pandas.DataFrame containing all the statistics we just calculated. You can either keep this data
in python and continue your analysis, or export the integrated values to an external file for analysis and plotting in
your_favourite_program.

The calculated statistics are saved autoatmically to ‘sample_stats.csv’ in the ‘data_export’ directory. You can also spec-
ify the filename manually using the £ilename variable in getstats (), which will be saved in the ‘data_export’
directory, or you can use the pandas built in export methods like to_csv () or to_excel () to take your data
straight to a variety of formats, for example:

stats.to_csv('stats.csv') # .csv format

1.1.4.10 Reproducibility

A key new feature of 1at ools is making your analysis quantitatively reproducible. As you go through your analysis,
latools keeps track of everything you’re doing in a command log, which stores the sequence and parameters of
every step in your data analysis. These can be exported, alongside an SRM table and your raw data, and be imported
and reproduced by an independent user.

If you are unwilling to make your entire raw dataset available, it is also possible to export a ‘minimal’ dataset, which
only includes the elements required for your analyses (i.e. any analyte used during filtering or processing, combined
with the analytes of interest that are the focus of the reduction).

Minimal Export

The minimum parameters and data to reproduce you’re analysis can be exported by:

eg.minimal_export ()

This will create a new folder inside the data_export folder, called minimal export. This will contain your
complete dataset, or a subset of your dataset containing only the analytes you specify, the SRM values used to calibrate
your data, and a . 1og file that contains a record of everything you’ve done to your data.

This entire folder should be compressed (e.g. .zip), and included alongside your publication.

1.1. User Guide 21

http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf

latools Documentation, Release 0.3.4-submission

Tip: When someone else goes to reproduce your analysis, everything you’ve done to your data will be re-calculated.
However, analysis is often an iterative process, and an external user does not need to experience all these iterations.
We therefore recommend that after you’ve identified all the processing and filtering steps you want to apply to the
data, you reprocess your entire dataset using only these steps, before performing a minimal export.

Import and Reproduction

To reproduce someone else’s analysis, download a compressed minimal_export folder, and unzip it. Next, in a new
python window, run:

import latools as la

rep = la.reproduce('path/to/analysis.log')

This will reproduce the entire analysis, and call it ‘rep’. You can then experiment with different data filters and
processing techniques to see how it modifies their results.

1.1.4.11 Summary

If we put all the preceding steps together:

eg = la.analyse(data_folder="'./data/"',
config='DEFAULT',
internal_standard='Ca43"',
srm_identifier="'STD")
eg.trace_plots ()

eg.despike (expdecay_despiker=True,
noise_despiker=True)

eg.autorange (on_mult=[1.5, 0.8],
off_mult=[0.8, 1.5])

eg.bkg_calc_weightedmean (weight_fwhm=300,
n_min=10)

eg.bkg_plot ()
eg.bkg_subtract ()
eg.ratio()

eg.calibrate(drift_correct=False,
srms_used=['NIST610', 'NIST612', 'NIST614'])

eg.calibration_plot ()

eg.filter_threshold(analyte="A127"', threshold=100e-6) # remember that all units are_
—~1in mol/mol!

eg.filter_reports (analytes="'A127"', filt_str="'thresh')

eg.filter_on(filt="Albelow")

22 Chapter 1. Overview

latools Documentation, Release 0.3.4-submission

eg.filter_off (filt='Albelow', analyte='Mg25")

eg.make_subset (samples='Sample-1"', name='setl')
eg.make_subset (samples=["'Sample-2"', 'Sample-3'], name='set2'")

eg.filter_on(filt=0, subset='setl')

eg.filter_off (£ilt=0, subset='set2')
eg.sample_stats (stats=['mean', 'std'], filt=True)
stats = eg.getstats|()

eg.minimal_export ()

Here we processed just 3 files, but the same procedure can be applied to an entire day of analyses, and takes just a
little longer.

The processing stage most likely to modify your results is filtering. There are a number of filters available, ranging
from simple concentration thresholds (filter_threshold (), as above) to advanced multi-dimensional clustering
algorithms (filter_clustering ()). We recommend you read and understand the section on advanced_filtering
before applying filters to your data.

Before You Go

Before you try to analyse your own data, you must configure latools to work with your particular instrument/standards.
To do this, follow the Three Steps to Configuration guide.

We also highly recommend that you read through the advanced_topics, so you understand how latools works
before you start using it.

1.1.4.12 FAQs
| can’t get my data to import...

Follow the instructions /ere. If you're really stuck,

Your software is broken. It doesn’t work!

If you think you’ve found a bug in latools (i.e. not specific to your computer / Python installation), or that
latools is doing something peculiar, we’re keen to know about it. You can tell us about it by creating an issue
on the project GitHub page. Describe the problem as best you can, preferably with some examples, and we’ll get to it
as soon as we can.

I want to do X, can you add this feature?

Probably! Head on over to the GitHub project page, and create an issue. Write us a detailed description of what you’re
trying to do, and label the issue as an ‘Enhancement’ (on the right hand side), and we’ll get to it as soon as we can.

1.1. User Guide 23

https://github.com/oscarbranson/latools/issues/new
https://github.com/oscarbranson/latools/issues/new

latools Documentation, Release 0.3.4-submission

1.1.4.13 Example Analyses

1. Cultured foraminifera data, and comparison to manually reduced data.

2. Downcore (fossil) foraminifera data, and comparison to manually reduced data.
3. Downcore (fossil) foraminifera data, and comparison to data reduced with Iolite.
4. Zircon data, and comparison to values reported in Burnham and Berry, 2017.

All these notebooks and associated data are available for download here.

1.1.5 Configuration Guide

1.1.5.1 Three Steps to Configuration

Warning: latools will not work if incorrectly configured. Follow the instructions below carefully.

Like all software, 1atools is stupid. It won’t be able to read your data or know the composition of your reference
materials, unless you tell it how.

1. Data Format Description

Mass specs produce a baffling range of different data formats, which can also be customised by the user. Creating a
built-in data reader that can handle all these formats is impossible. You’ll therefore have to write a description of your
data format, which 1atools can understand.

The complexity of this data format description will depend on the format of your data, and can vary from a simple 3-4
line snippet, to a baffling array of heiroglyphics. We appreciate that this may be something of a barrier to the beginner.

To make this process as painless as possible, we’ve put together a step-by-step guide on how to approach this is in the
Data Formats section.

If you get stuck, head on over to the mailing list, and ask for help.

2. Modify/Make a SRM database File

This contains raw compositional values for the SRMs you use in analysis, and is essential for calibrating your data.
latools comes with GeoRem ‘preferred’ compositions for NIST610, NIST612 and NIST614 glasses. If you use
any other standards, or are unhappy with the GeoRem ‘preferred’ values, you’ll have to create a new SRM database
file.

Instructions on how to do this are in The SRM File guide. If you’re happy with the GeoRem values, and only use
NIST610, NIST612 and NIST614, you can skip this step.

3. Configure LAtools

Once you’ve got a data description and SRM database that you’re happy with, you can create a configuration in
latools and make it the default for your system. Every time you start a new analysis, 1at ools will then automat-
ically use your specific data format description and SRM file.

24 Chapter 1. Overview

http://nbviewer.jupyter.org/github/oscarbranson/latools/blob/master/Supplement/manual_cultured_foram.ipynb
http://nbviewer.jupyter.org/github/oscarbranson/latools/blob/master/Supplement/manual_downcore_foram.ipynb
http://nbviewer.jupyter.org/github/oscarbranson/latools/blob/master/Supplement/iolite_downcore_foram.ipynb
https://iolite-software.com/
http://nbviewer.jupyter.org/github/oscarbranson/latools/blob/master/Supplement/manual_zircon.ipynb
https://www.nature.com/articles/ngeo2942
https://github.com/oscarbranson/latools/tree/master/Supplement
https://groups.google.com/forum/#!forum/la
http://georem.mpch-mainz.gwdg.de/

latools Documentation, Release 0.3.4-submission

You can set up multiple configurations, and specify them using the conf i g parameter when beggining to analyse
a new dataset. This allows latools to easily switch between working on data from different instruments, or using
different SRM sets.

Instructions on how to set up and organise configurations are in the Managing Configurations section.
1.1.5.2 Data Formats

latools can be set up to work with pretty much any conceivable text-based data format. To get your data into
latools, you need to think about two things:

1. File Structure

At present, latools is designed for data that is collected so that each text file contains ablations of a single sample
or (a set of) standards, with a name corresponding to the identity of the sample. An ideal data structure would look
something like this:

data/
STD-1.csv
Sample-1.csv
Sample-2.csv
Sample—-3.csv
STD-2.csv

Where each of the .csv files within the ‘data/’ contains one or more ablations of a single sample, or numerous standards
(i.e. STD-1 could contain ablations of three different standards). The names of the .csv files are used to label the data
throughout analysis, so should be unique, and meaningful. Standards are recognised by latools.analyse by the
presence of identifying characters that are present in all standard names, in this case 'STD'.

When importing the data, you give latools.analyse the data/ folder, and some information about the SRM
identifier (srm_identifier="'STD"') and the file extension (extension="'.csv"'), and it imports all data files
in the folder.

Todo: Some labs save an entire analytical session in a single data file. There are plans to accommodate this in future,
but it’s not implemented yet. At present, the only way to analyse this type of datain 1atools is to split them up into
separate files, following the file structure above. If you would like us to work on this, please let us know, otherwise it
will stay near the bottom of the pile. ..

2. Data Format

We tried to make the data import mechanism as simple as possible, but because of the diversity and complexity of
formats from different instruments, it can still be a bit tricky to understand. The following will hopefully give you
everything you need to write your data format description.

Data Format Description : General Principles

The data format description is stored in a plain-text file, in the JSON format. In practice, the format description
consists of a number of names entries with corresponding values, which are read and interpreted by latools. A
generic JSON file might look something like this:

1.1. User Guide 25

https://github.com/oscarbranson/latools/issues/16
https://en.wikipedia.org/wiki/JSON

latools Documentation, Release 0.3.4-submission

{

'entry_1': 'value',
'entry_2': ['this', 'is', 'a', 'list'],
'entry_3': (['a', 'set', 'of'], 'three', 'values')

}

Required Sections

To work correctly, the 1atools dataformat file must contain three, specific entries:

* meta_regex contains information on how to read the ‘metadata’ in the file header. Each entry has the

form:
{
"meta_regex": {
"line_number": [["metadata_name"], "Regular Expression with a capture,
—group."]
}
}

Don’t worry at this point if ‘Regular Expression” and ‘capture group’ mean nothing to you. We’ll get to that

later.

Warning: The meta_regex component of the dataformat description must contain an entry that finds
the ‘date’ of the analysis. Background and drift correction depend upon having this information. That is, it
must have an entry like {"N": {["date"], "regex_string"}}, where "N" is a line number (in
quotation), and regex_string isolates the analysis date of the file, as demonstrated here.

e column_id contains information on where the column names of the data are, and how to interpret them.
This requires 4 specific entries, and should look something like:

"column_id": {
"delimiter": "Character that separates column headings, e.g. \t (tab) or ,
— (comma)",
"timecolumn": "Numeric index of time column. Usually zero (the first,
—column) . Must be an integer, without quotations.",
"name_row": "The line number that contains the column headings. Must be_,

—an integer, without quotations",
"pattern": "A Regular Expression that identifies valid analyte names in a_,

—capture group."

}

e genfromtext_args contains information on how to read the actual data table. latools uses
Numpy’s genfromtxt () function to read the raw data, so this section can contain any valid arguments
for the genfromtxt () function. For example, you might include:

"genfromtext_args": {
"delimiter": "Character that separates data values in rows, e.g. \t (tab),

—or , (comma)",
"skip_header": "Integer, without quotations, that specifies the number of

—~lines at the start of the file that xdon't* contain data values.",

26

Chapter 1. Overview

https://regex101.com/r/jfPV3Z/1

latools Documentation, Release 0.3.4-submission

Optional Sections

* preformat_replace. Particularly awkward data formats may require some ‘cleaning’ before
they’re readable by genfromtxt () (e.g. the removal of non-numeric characters). You can do
this by optionally including a preformat_replace section in your dataformat description. This
consists of {"regex_expression": "replacement_text"} pairs, which are applied to
the data before import. For example:

"preformat_replace": {
"[A079, .J+": nmnn
}

will replace all non-numeric characters that are not ., , or a space with "" (i.e. no text - remove them).
The use of preformat_replace should not be necessary for most dataformats. - time_format.
latools attempts to automatically read the date information identified by meta_regex (using
dateutil’s parse ()), but in rare cases this will fail. If it fails, you’ll need to manually specify
the date format. Specify the date format using standard notation for formatting and reading times. For

example:

{

"time_format": "%d-%b-%Y SH:%M:%S"

will correctly read a time format of “01-Mar-2016 15:23:03”.

Regular Expressions (RegEx)

Data import in 1atools makes use of Regular Expressions to identify different parts of your data. Regular expres-
sions are a way of defining patterns that allow the computer to extract information from text that isn’t exactly the same
in every instance. A very basic example, if you apply the pattern:

"He's not the Mesiah, (.=*)"

to "He'

s not the Mesiah, he's a very naughty boy!", the expression will match the text, and

you'llget "he's a very naughty boy!" in a capture group. To break the expression down a bit:

* ‘“‘He’s not the Mesiah, ‘* tells the computer that you’re looking for text containing this phrase.
* . signifies ‘any character’

* « signifies ‘anywhere between zero and infinity occurrences of .

e () identifies the ‘capture group’. The expression would still match without this, but you wouldn’t be able to

isolate the text within the capture group afterwards.

What would the capture group get if you applied the expressionto He 's not the Mesiah, he just thinks

he is...?

Applying this to metadata extraction, imagine you have a line in your file header like:

1.1. User Guide

https://docs.python.org/3.6/library/datetime.html#strftime-and-strptime-behavior
https://en.wikipedia.org/wiki/Regular_expression

latools Documentation, Release 0.3.4-submission

Acquired : Oct 29 2015 03:11:05 pm using AcgMethod OB102915.m

And you need to extract the date (Oct 29 2015 03:11:05 pm). You know that the line always starts with

Acquired [varying number of spaces] :,andends withusing AcgMethod [some text]. The
expression:
Acquired +: (.x) using.=

will get the date in its capture group! For a full explanation of how this works, have a look at this breakdown by
Regex101 (Note ‘Explanation’ section in upper right).

Writing your own Regular Expressions can be tricky to get your head around at first. We suggest using the superb
Regex101 site to help you design the Regular Expressions in your data format description. Just copy and paste the text
you’re working with (e.g. line from file header containing the date), play around with the expression until it works as
required, and then copy it across to your dataformat file.

Note: If you’re stuck on data formats, submit a question to the mailing list and we’ll try to help. If you think you’ve
found a serious problem in the software that will prevent you importing your data, file an issue on the GitHub project
page, and we’ll look into updating the software to fix the problem.

Writing a new Data Format Description : Step-By-Step

Data produced by the UC Davis Agilent 8800 looks like this:

C:\Path\To\Data.D

Intensity Vs Time, CPS

Acquired : Oct 29 2015 03:11:05 pm using AcgMethod 0B102915.m
Time [Sec],Mg24,Mg25,A127,Ca43,Ca44,Mn55,3r88,Bal37,Bal38
0.367,666.68,25.00,3100.27,300.00,14205.75,7901.80,166.67,37.50,25.00

This step-by-step guide will go through the process of writing a dataformat description from scratch for the file.

Tip: We’re working from scratch here for illustrative purposes. When doing this in reality, you might find the
get_dataformat_template () (accessible via latools.config.get_dataformat_template()),
which creates an annotated data format file for you to adapt.

1. Create an empty file, name it, and give it a . json extension. Open the file in your favourite text editor. Data
in . json files can be stored in lists (comma separated values inside square brackets, e.g. [1,2,3]) or as { ‘key’:
‘value’} pairs inside curly brackets.

2. The data format description contains three named sections - meta_regex, column_id and
genfromtext_args, which we’ll store as {‘key’: ‘value’} pairs. Create empty entries for these in your
new . json file. Your file should now look like this:

'meta_regex': {},
'column_id': {},
'genfromtext_args': {}

3. Define the start time of the analysis. In this case, it’s Oct 29 2015 03:11:05 pm, but it will be different
in other files. We therefore use a ‘regular expression’ to define a pattern that describes the date. To do this, we’ll

28 Chapter 1. Overview

https://regex101.com/r/C2Qs5z/1
https://regex101.com/r/C2Qs5z/1
https://regex101.com/r/HKNavd/1
https://groups.google.com/forum/#!forum/latools
https://github.com/oscarbranson/latools/issues/new
https://github.com/oscarbranson/latools/issues/new

latools Documentation, Release 0.3.4-submission

isolate the line containing the date (line 2 - numbers start at zero in Python!), and head on over to Regex101 to
write our expression. Add this expression to the meta_regex session, with the line number as its key:

'meta_regex': {'2': (['date'],

"([A-Z]la-z]+ [0-9]+ [0-91{4}[1+[0-9:]1+ [ampl+) ')},
'column_id': {},
'genfromtext_args': {}

Tip: Having trouble with Regular Expressions? We really recommend Regex101!

4. Set some parameters that define where the column names are. name_row defines which row the column
names are in (3), delimeter describes what character separates the column names (,), t imecolumn is the
numberical index of the column containing the ‘time’ data (in this case, 0). This will grab everything in row 3
that’s separated by a comma, and tell 1atools that the first column contains the time info. Now we need to tell
it which columns contain the analyte names. We’ll do this with a regular expression again, copying the entire
column over to Regex 101 to help us write the expression. Put all this information into the ‘column_id’ section:

{

'meta_regex': {'2': (['date'],
'([A-Z] [a—z]+ [0-9]+ [0-9]{4}[1+[0-9:]1+ [ampl+) ')},
'column_id': {'name_row': 3,
'delimiter': ', "',
'timecolumn': O,
'pattern': ' ([A-z]{1,2}[0-9]1{1,3})"},
'genfromtext_args': {}

}

5. Finally, we need to add some parameters that tell 1atools how to read the actual data table. In this case, we
want to skip the first 4 lines, and then tell it that the values are separated by commas. Add this information to
the genfromtext_args section:

{

'meta_regex': {'2': (['date'],
'([A-Z] [a—z]+ [0-9]+ [0-9]{4}[1+[0-9:]1+ [ampl+) ')},
'column_id': {'name_row': 3,
'delimiter': ', "',
'timecolumn': O,
'pattern': ' ([A-z]{1,2}[0-9]1{1,3})"},
'genfromtext_args': {'delimiter': ', "',

'skip_header': 4}

5. Test the format description, using the test_dataformat () function. In Python:

import latools as la

my_dataformat = 'path/to/my/dataformat.json’
my_datafile = 'path/to/my/datafile.csv

la.config.test_dataformat (my_datafile, my_dataformat)

This will go through the data import process for you file, printing out the results of each stage, so if it fails you can see
where if failed, and fix the problem.

Fix any errors, and you’re done! You have a working data description.

1.1. User Guide 29

https://regex101.com/r/P1chhB/1
https://regex101.com/r/P1chhB/1
http://regex101.com
https://regex101.com/r/cOG8dN/1

latools Documentation, Release 0.3.4-submission

I’'ve written my dataformat, now what?

Once you’re happy with your data format description, put it in a text file, and save it as ‘my_dataformat.json’ (obviously
replace my_dataformat with something meaningful...). When you want to import data using your newly defined
format, you can point 1atools towards it by specifying dataformat="my_dataformat.dict ' when starting
a data analysis. Alternatively, you can define a new Managing Configurations, to make this the default data format for

your setup.

1.1.5.3 The SRM File

The SRM file contains compositional data for standards. To calibrate raw data standards measured during analysis
must be in this database.

File Location

The default SRM table is stored in the resources directory within the 1atools install location.

If you wish to use a different SRM table, the path to the new table must be specified in the configuration file or on a

case-by-case basis when calibrating your data.

File Format

The SRM file must be stores as a .csv file (comma separated values). The full default table has the following

columns:
ltem| SRM | Value Un- Uncer- Unit| Geo- Refer- M 0/g 0/g_ermol/g| mol/g_|
cer- tainty_Type ReM_bibcodence
tainty
Se | NIST61038.0 42.0 95%CL ug/g | GeoReM Jochum 78.96 0.000138.2e-| 1.747er 5.319¢
5211 et al 05 06 07
2011

For completeness, the full SRM file contains a lot of info. You don’t need to complete all the columns for a new SRM.

Essential Data

The essential columns that must be included for 1atools to use a new SRM are:

ltem

SRM

mol/g

mol/g_err

Se

NIST610

1.747e-06

5.319e-07

Other columns may be left blank, although we recommend at least adding a note as to where the values come from in
the Reference column.

Creating/Modifying an SRM File

To create a new table you can either start from scratch (not recommended), or modify a copy of the existing SRM table
(recommended).

30

Chapter 1. Overview

lerr

latools Documentation, Release 0.3.4-submission

To get a copy of the existing SRM table, in Python:

import latools as la

la.config.copy_SRM_file('path/to/save/location', config='DEFAULT')

This will create a copy of the default SRM table, and save it to the specified location. You can then modify the copy
as necessary.

To use your new SRM database, you can either specify it manually at the start of a new analysis:

import latools as la

eg = la.analyse('data/', srm_file='path/to/srmfile.csv")

Or specify it as part of a configuration, so that 1atools knows where it is automatically.

1.1.5.4 Managing Configurations

A ‘configuration’ is how latools stores the location of a data format description and SRM file to be used during
data import and analysis. In labs working with a single LA-ICPMS system, you can set a default configuration, and
then leave this alone. If you’re running multiple LA-ICPMS systems, or work with different data formats, you can
specify multiple configurations, and specify which one you want to use at the start of analysis, like this:

import latools as la

eg = la.analyse('data', config='MY-CONFIG-NAME")

Viewing Existing Configurations

You can see a list of currently defined configurations at any time:

import latools as la
la.config.print_all()
Currently defined LAtools configurations:
REPRODUCE [DO NOT ALTER]
dataformat: /latools/install/location/resources/data_formats/repro_dataformat. json

srmfile: /latools/install/location/resources/SRM_GeoRem_Preferred_170622.csv

UCD-AGILENT [DEFAULT]
dataformat: /latools/install/location/resources/data_formats/UCD_dataformat. json
srmfile: /latools/install/location/resources/SRM_GeoRem_Preferred_170622.csv

Note how each configuration has a dataformat and srmfile specified. The REPRODUCE configuration is a
special case, and should not be modified. All other configurations are listed by name, and the default configuration
is marked (in this case there’s only one, and it’s the default). If you don’t specify a configuration when you start an
analysis, it will use the default one.

Creating a Configuration

Once you’ve created your own dataformat description and/or SRM File, you can set up a configuration to use them:

1.1. User Guide 31

latools Documentation, Release 0.3.4-submission

import latools as la

create new config

la.config.create ('MY-FANCY-CONEFIGURATION',
srmfile='path/to/srmfile.csv’',
dataformat='path/to/dataformat.json',
base_on="DEFAULT', make_default=False)

check it's there
la.config.print_all()

Currently defined LAtools configurations:

REPRODUCE [DO NOT ALTER]
dataformat: /latools/install/location/resources/data_formats/repro_dataformat. json
srmfile: /latools/install/location/resources/SRM_GeoRem_Preferred_170622.csv

UCD-AGILENT [DEFAULT]
dataformat: /latools/install/location/resources/data_formats/UCD_dataformat. json
srmfile: /latools/install/location/resources/SRM_GeoRem_Preferred_170622.csv

MY-FANCY-CONFIGURATION
dataformat: path/to/dataformat.json
srmfile: path/to/srmfile.csv

You should see the new configuration in the list, and unless you specified make_default=True, the default should
not have changed. The base_on argument tells latools which existing configuration the new one is based on.
This only matters if you’re only specifying one of srmfile or dataformat - whichever you don’t specify is
copied from the base_on configuration.

Important: When making a configuration, make sure you store the dataformat and srm files somewhere permanent -
if you move or rename these files, the configuration will stop working.

Modifying a Configuration

Once created, configurations can be modified. ..

import latools as la

modify configuration
la.config.update ('MY-FANCY-CONFIGURATION', 'srmfile', 'correct/path/to/srmfile.csv"')

Are you sure you want to change the srmfile parameter of the MY-FANCY-
—CONFIGURATION configuration?
It will be changed from:
path/to/srmfile.csv
to:
correct/path/to/srmfile.csv
> [N/yl: vy
Configuration updated!

check it's updated
la.config.print_all()

32 Chapter 1. Overview

latools Documentation, Release 0.3.4-submission

Currently defined LAtools configurations:

REPRODUCE [DO NOT ALTER]
dataformat: /latools/install/location/resources/data_formats/repro_dataformat. json
srmfile: /latools/install/location/resources/SRM_GeoRem_ Preferred_170622.csv

UCD-AGILENT [DEFAULT]
dataformat: /latools/install/location/resources/data_formats/UCD_dataformat. json
srmfile: /latools/install/location/resources/SRM_GeoRem_Preferred_170622.csv

MY-FANCY-CONFIGURATION
dataformat: path/to/dataformat.json
srmfile: correct/path/to/srmfile.csv

Deleting a Configuration

Or deleted. ..

import latools as la

delete configuration
la.config.delete ("MY-FANCY-CONFIGURATION"')

Are you sure you want to delete the MY-FANCY-CONFIGURATION configuration?

> [N/yl: y
Configuration deleted!

check it's gone
la.config.print_all()

Currently defined LAtools configurations:

REPRODUCE [DO NOT ALTER]
dataformat: /latools/install/location/resources/data_formats/repro_dataformat. json
srmfile: /latools/install/location/resources/SRM_GeoRem_Preferred_170622.csv

UCD-AGILENT [DEFAULT]
dataformat: /latools/install/location/resources/data_formats/UCD_dataformat. json
srmfile: /latools/install/location/resources/SRM_GeoRem_Preferred_170622.csv

1.1. User Guide 33

latools Documentation, Release 0.3.4-submission

34

Chapter 1. Overview

CHAPTER 2

Function Documentation

2.1 LAtools Documentation

2.1.1 latools.analyse object

class latools

.latools.analyse (data_folder, errorhunt=False, config="DEFAULT’, datafor-

mat=None, extension=".csv’, srm_identifier="STD’,
cmap=None, time_format=None, internal_standard="Ca43’,
names="file_names’, srm_file=None)

Bases: object

For processing and analysing whole LA - ICPMS datasets.

Parameters

data_folder (str)— The path to a directory containing multiple data files.

errorhunt (bool) — If True, latools prints the name of each file before it imports the
data. This is useful for working out which data file is causing the import to fail.

config (str) — The name of the configuration to use for the analysis. This determines
which configuration set from the latools.cfg file is used, and overrides the default configu-
ration setup. You might sepcify this if your lab routinely uses two different instruments.

dataformat (str or dict)— Either a path to a data format file, or a dataformat dict.
See documentation for more details.

extension (str)— The file extension of your data files. Defaults to ‘.csv’.

srm_identifier (str) — A string used to separate samples and standards.
srm_identifier must be present in all standard measurements. Defaults to ‘STD’.

cmap (dict)— A dictionary of {analyte: colour} pairs. Colour can be any valid matplotlib
colour string, RGB or RGBA sequence, or hex string.

35

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

latools Documentation, Release 0.3.4-submission

* time_format (str)— A regex string identifying the time format, used by pandas when
created a universal time scale. If unspecified (None), pandas attempts to infer the time
format, but in some cases this might not work.

* internal_standard (str) — The name of the analyte used as an internal standard
throughout analysis.

* names (str)—
— ‘file_names’ : use the file names as labels (default)

— ’metadata_names’ : used the ‘names’ attribute of metadata as the name anything else :
use numbers.

folder
str — Path to the directory containing the data files, as specified by data_folder.

dirname
str — The name of the directory containing the data files, without the entire path.

files
array_like — A list of all files in folder.

param_dir
str — The directory where parameters are stored.

report_dir
str — The directory where plots are saved.

data
dict — A dict of latools.D data objects, labelled by sample name.

samples
array_like — A list of samples.

analytes
array_like — A list of analytes measured.

stds
array_like — A list of the latools.D objects containing hte SRM data. These must contain srm_identifier in
the file name.

srm_identifier
str — A string present in the file names of all standards.

cmaps
dict — An analyte - specific colour map, used for plotting.

ablation_times (samples=None, subset=None)

apply_ classifier (name, samples=None, subset=None)
Apply a clustering classifier based on all samples, or a subset.

Parameters

* name (str)— The name of the classifier to apply.

* subset (str)— The subset of samples to apply the classifier to.
Returns name
Return type str

autorange (analyte="total_counts’, gwin=>35, swin=3, win=20, on_mult=[1.0, 1.5], off_mult=[1.5, 1],
nbin=10, transform="log’, thresh_n=None, ploterrs=True)
Automatically separates signal and background data regions.

36 Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

latools Documentation, Release 0.3.4-submission

Automatically detect signal and background regions in the laser data, based on the behaviour of a single
analyte. The analyte used should be abundant and homogenous in the sample.

Step 1: Thresholding. The background signal is determined using a gaussian kernel density estimator
(kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions,
corresponding to ‘signal’ and ‘background’. The minima between these two distributions is taken as a
rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold
is identified as a ‘transition’.

Step 2: Transition Removal. The width of the transition regions between signal and background are then
determined, and the transitions are excluded from analysis. The width of the transitions is determined by
fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point
where the gaussian intensity is at at conf time the gaussian maximum. These gaussians are fit to subsets
of the data centered around the transitions regions determined in Step 1, 4+/- win data points. The peak
is further isolated by finding the minima and maxima of a second derivative within this window, and the
gaussian is fit to the isolated peak.

Parameters

* analyte (str) — The analyte that autorange should consider. For best results, choose
an analyte that is present homogeneously in high concentrations. This can also be ‘to-
tal_counts’ to use the sum of all analytes.

e gwin (int) — The smoothing window used for calculating the first derivative. Must be
odd.

e win (int) - Determines the width (¢ +/- win) of the transition data subsets.

* smwin (int) — The smoothing window used for calculating the second derivative. Must
be odd.

* conf (float)—The proportional intensity of the fitted gaussian tails that determines the
transition width cutoff (lower = wider transition regions excluded).

* trans_mult (array_like, len=2)- Multiples of the peak FWHM to add to the
transition cutoffs, e.g. if the transitions consistently leave some bad data proceeding the
transition, set trans_mult to [0, 0.5] to ad 0.5 * the FWHM to the right hand side of the
limit.

Returns

* Qutputs added as instance attributes. Returns None.

* bkg, sig, trn (iterable, bool) — Boolean arrays identifying background, signal and transi-
sion regions

¢ bkgrng, sigrng and trnrng (iterable) — (min, max) pairs identifying the boundaries of
contiguous True regions in the boolean arrays.

basic_processing (noise_despiker=True, despike_win=3, despike_nlim=12.0, despike_maxiter=4,
autorange_analyte="total_counts’, autorange_gwin=>5, autorange_swin=3, au-
torange_win=20, autorange_on_mult=[1.0, 1.5], autorange_off_mult=[1.5, 1],
autorange_nbin=10, autorange_transform="log’, autorange_thresh_n=None,
bkg_weight_fwhm=300.0, bkg_n_min=20, bkg_n_max=None,
bkg_cstep=None, bkg_filter=Fualse, bkg_f win=7, bkg_f n_lim=3,
bkg_errtype="stderr’, calib_drift_correct=True, calib_srms_used=["NIST610’,
"NIST612’, "NIST614’], calib_zero_intercept=True, calib_n_min=10,
plots=True)

bkg calc_interpld (analytes=None, kind=1, n_min=10, n_max=None, cstep=None,

bkg_filter=False, f win=7, f_n_lim=3)
Background calculation using a 1D interpolation.

2.1. LAtools Documentation 37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

latools Documentation, Release 0.3.4-submission

scipy.interpolate.interp1D is used for interpolation.

Parameters

analytes (str or iterable)-— Which analyte or analytes to calculate.

kind (str or int) - Integer specifying the order of the spline interpolation used, or
string specifying a type of interpolation. Passed to scipy.interpolate.interplD

n_min (int) - Background regions with fewer than n_min points will not be included in
the fit.

cstep (float or None)- The interval between calculated background points.

filter (bool) — If true, apply a rolling filter to the isolated background regions to
exclude regions with anomalously high values. If True, two parameters alter the filter’s
behaviour:

£f_win (int)— The size of the rolling window

f n lim (float)— The number of standard deviations above the rolling mean to set
the threshold.

bkg_calc_weightedmean (analytes=None, weight_fwhm=None, n_min=20, n_max=None,

cstep=None, bkg_filter=False, f_win=7, f n_lim=3)

Background calculation using a gaussian weighted mean.

Parameters

analytes (str or iterable)-— Which analyte or analytes to calculate.

weight_fwhm (f1oat) — The full-width-at-half-maximum of the gaussian used to cal-
culate the weighted average.

n_min (int) - Background regions with fewer than n_min points will not be included in
the fit.

cstep (float or None)- The interval between calculated background points.

filter (bool) — If true, apply a rolling filter to the isolated background regions to
exclude regions with anomalously high values. If True, two parameters alter the filter’s
behaviour:

£ _win (int) — The size of the rolling window

f n_lim (float) — The number of standard deviations above the rolling mean to set
the threshold.

bkg_plot (analytes=None, figsize=None, yscale="log’, ylim=None, err="stderr’, save=True)
Plot the calculated background.

Parameters

analytes (str or iterable)— Which analyte(s) to plot.

figsize (tuple) — The (width, height) of the figure, in inches. If None, calculated
based on number of samples.

yscale (str) - ‘log’ (default) or ‘linear’.
ylim (tuple) — Manually specify the y scale.
err (str)— What type of error to plot. Default is stderr.

save (bool)—If True, figure is saved.

Returns fig, ax

38

Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

latools Documentation, Release 0.3.4-submission

Return type matplotlib.figure, matplotlib.axes

bkg_subtract (analytes=None, errtype=’stderr’, focus="despiked’)
Subtract calculated background from data.

Must run bkg_calc first!
Parameters
* analytes (str or iterable)— Which analyte(s) to subtract.
* errtype (str)— Which type of error to propagate. default is ‘stderr’.

* focus (st r)— Which stage of analysis to work on. Change to ‘rawdata’ if you’re skip-
ping the despiking step.

calibrate (analytes=None, drift_correct=True, srms_used=['NIST610°, 'NIST612’, ’NIST614’],

zero_intercept=True, n_min=10)
Calibrates the data to measured SRM values.

Assumes that y intercept is zero.
Parameters

* analytes (str or iterable)-— Which analytes you’d like to calibrate. Defaults to
all.

* drift_correct (bool) — Whether to pool all SRM measurements into a single cal-
ibration, or vary the calibration through the run, interpolating coefficients between mea-
sured SRMs.

e srms_used (str or iterable)- Which SRMs have been measured. Must match
names given in SRM data file exactly.

* n_min (int)— The minimum number of data points an SRM measurement must have to
be included.

Returns

Return type None
calibration_plot (analytes=None, datarange=True, loglog=False, save=True)
clear calibration|()

crossplot (analytes=None, lognorm=True, bins=25, filt=False, samples=None, subset=None, fig-

size=(12, 12), save=False, colourful=True, mode="hist2d’, **kwargs)
Plot analytes against each other.

Parameters

* analytes (optional, array_like or str)- The analyte(s) to plot. Defaults
to all analytes.

e lognorm (bool)— Whether or not to log normalise the colour scale of the 2D histogram.
* bins (int) - The number of bins in the 2D histogram.

e filt (str, dict or bool) — Either logical filter expression contained in a str, a
dict of expressions specifying the filter string to use for each analyte or a boolean. Passed
to grab_filt.

» figsize (tuple)— Figure size (width, height) in inches.

* save (bool or str)-—If True, plot is saves as ‘crossplot.png’, if str plot is saves as
Str.

2.1.

LAtools Documentation

39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

latools Documentation, Release 0.3.4-submission

* colourful (bool)— Whether or not the plot should be colourful :).
¢ mode (str)— ‘hist2d’ (default) or ‘scatter’

Returns

Return type (fig, axes)

crossplot_filters (filter_string, analytes=None, samples=None, subset=None, filt=None)
Plot the results of a group of filters in a crossplot.

Parameters

e filter_string (str)— A string that identifies a group of filters. e.g. ‘test’” would
plot all filters with ‘test’” in the name.

* analytes (optional, array_like or str)- The analyte(s) to plot. Defaults
to all analytes.

Returns
Return type fig, axes objects

despike (expdecay_despiker=False, exponent=None, noise_despiker=True, win=3, nlim=12.0, expo-
nentplot=False, maxiter=4, autorange_kwargs={})
Despikes data with exponential decay and noise filters.

Parameters
* expdecay_despiker (bool)— Whether or not to apply the exponential decay filter.

* exponent (None or float)-Theexponentforthe exponential decay filter. If None,
it is determined automatically using find_expocoef.

* tstep (None or float) — The timeinterval between measurements. If None, it is
determined automatically from the Time variable.

* noise_despiker (bool)— Whether or not to apply the standard deviation spike filter.
e win (int) — The rolling window over which the spike filter calculates the trace statistics.

* nlim (float)— The number of standard deviations above the rolling mean that data are
excluded.

* exponentplot (bool)— Whether or not to show a plot of the automatically determined
exponential decay exponent.

* maxiter (int)— The max number of times that the fitler is applied.
Returns
Return type None

export_traces (outdir=None, focus_stage=None, analytes=None, samples=None, sub-

set="All_Analyses’, filt=False)
Function to export raw data.

Parameters
e outdir (str) - directory to save toe traces. Defaults to ‘main-dir-name_export’.
* focus_stage (st r)— The name of the analysis stage to export.
— ’rawdata’: raw data, loaded from csv file.

— ’despiked’: despiked data.

40 Chapter 2. Function Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

latools Documentation, Release 0.3.4-submission

— ’signal’/’background’: isolated signal and background data. Created by self.separate,
after signal and background regions have been identified by self.autorange.

— ’bkgsub’: background subtracted data, created by self.bkg_correct

— ’ratios’: element ratio data, created by self.ratio.

— ’calibrated’: ratio data calibrated to standards, created by self.calibrate.
Defaults to the most recent stage of analysis.

* analytes (str or array - like) - Either a single analyte, or list of analytes to
export. Defaults to all analytes.

* samples (str or array - like)-Eitherasingle sample name, or list of samples
to export. Defaults to all samples.

e filt (str, dict or bool) — Either logical filter expression contained in a str, a
dict of expressions specifying the filter string to use for each analyte or a boolean. Passed
to grab_{filt.

filter_clear (samples=None, subset=None)
Clears (deletes) all data filters.

filter_clustering (analytes, filt=False, normalise=True, method="meanshift’, in-
clude_time=False, samples=None, sort=True, subset=None, min_data=10,
**kwargs)

Applies an n - dimensional clustering filter to the data.
Parameters
* analytes (str)— The analyte(s) that the filter applies to.

e filt (bool)— Whether or not to apply existing filters to the data before calculating this
filter.

* normalise (bool) — Whether or not to normalise the data to zero mean and
unit variance. Reccomended if clustering based on more than 1 analyte. Uses
sklearn.preprocessing.scale.

* method (st r) — Which clustering algorithm to use:

— ’meanshift’: The sklearn.cluster MeanShift algorithm. Automatically determines num-
ber of clusters in data based on the bandwidth of expected variation.

— ’kmeans’: The sklearn.cluster KMeans algorithm. Determines the characteristics of
a known number of clusters within the data. Must provide n_clusters to specify the
expected number of clusters.

— 'DBSCAN’: The sklearn.cluster DBSCAN algorithm. Automatically determines the
number and characteristics of clusters within the data based on the ‘connectivity’ of
the data (i.e. how far apart each data point is in a multi - dimensional parameter space).
Requires you to set eps, the minimum distance point must be from another point to be
considered in the same cluster, and min_samples, the minimum number of points that
must be within the minimum distance for it to be considered a cluster. It may also be
run in automatic mode by specifying n_clusters alongside min_samples, where eps is
decreased until the desired number of clusters is obtained.

e include_time (bool)— Whether or not to include the Time variable in the clustering
analysis. Useful if you’re looking for spatially continuous clusters in your data, i.e. this
will identify each spot in your analysis as an individual cluster.

* samples (optional, array_like or None)-— Which samples to apply this fil-
ter to. If None, applies to all samples.

2.1. LAtools Documentation 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

latools Documentation, Release 0.3.4-submission

sort (bool) — Whether or not you want the cluster labels to be sorted by the mean
magnitude of the signals they are based on (0 = lowest)

min_data (int) — The minimum number of data points that should be considered by
the filter. Default = 10.

*xkwargs — Parameters passed to the clustering algorithm specified by method.
Parameters (DBSCAN) —

bandwidth [str or float] The bandwith (float) or bandwidth method (‘scott’ or ‘silver-
man’) used to estimate the data bandwidth.

bin_seeding [bool] Modifies the behaviour of the meanshift algorithm. Refer to
sklearn.cluster.meanshift documentation.

- Means Parameters (XK)—
n_clusters [int] The number of clusters expected in the data.
Parameters —

eps [float] The minimum ‘distance’ points must be apart for them to be in the same cluster.
Defaults to 0.3. Note: If the data are normalised (they should be for DBSCAN) this is
in terms of total sample variance. Normalised data have a mean of 0 and a variance of
1.

min_samples [int] The minimum number of samples within distance eps required to be
considered as an independent cluster.

n_clusters [int] The number of clusters expected. If specified, eps will be incrementally
reduced until the expected number of clusters is found.

maxiter [int] The maximum number of iterations DBSCAN will run.

Returns

Return type None

filter_correlation (x_analyte, y_analyte, window=None, r_threshold=0.9, p_threshold=0.05,

filt=True, samples=None, subset=None)

Applies a correlation filter to the data.

Calculates a rolling correlation between every window points of two analytes, and excludes data where

their Pearson’s R value is above r_threshold and statistically significant.

Data will be excluded where their absolute R value is greater than r_threshold AND the p - value associated
with the correlation is less than p_threshold. i.e. only correlations that are statistically significant are

considered.

Parameters

y_analyte (x_analyte,)— The names of the x and y analytes to correlate.
window (int, None)— The rolling window used when calculating the correlation.

r_threshold (float) - The correlation index above which to exclude data. Note: the
absolute pearson R value is considered, so negative correlations below -r_threshold will
also be excluded.

p_threshold (f1oat)— The significant level below which data are excluded.

£filt (bool)— Whether or not to apply existing filters to the data before calculating this
filter.

Returns

42

Chapter 2. Function Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

latools Documentation, Release 0.3.4-submission

Return type None

filter_defragment (threshold, mode="include’, filt=True, samples=None, subset=None)
Remove ‘fragments’ from the calculated filter

Parameters

* threshold (int) — Contiguous data regions that contain this number or fewer points
are considered ‘fragments’

* mode (st r)— Specifies wither to ‘include’ or ‘exclude’ the identified fragments.

e filt (bool or filt string)- Which filter to apply the defragmenter to. Defaults
to True

* samples (array_like or None)-— Which samples to apply this filter to. If None,
applies to all samples.

e subset (str or number) — The subset of samples (defined by make_subset) you
want to apply the filter to.

Returns
Return type None

filter_effect (analytes=None, stats=["mean’, ’std’], filt=True)
Quantify the effects of the active filters.

Parameters
* analytes (str or 1ist)-— Which analytes to consider.
e stats (I1st)— Which statistics to calculate.

e file (valid filter string or bool)— Which filter to consider. If True, ap-
plies all active filters.

Returns Contains statistics calculated for filtered and unfiltered data, and the filtered/unfiltered
ratio.

Return type pandas.DataFrame

filter_exclude_downhole (threshold, filt=True, samples=None, subset=None)
Exclude all points down-hole (after) the first excluded data.

Parameters

* threhold (int)— The minimum number of contiguous excluded data points that must
exist before downhole exclusion occurs.

e file (valid filter string or bool)— Which filter to consider. If True, ap-
plies to currently active filters.

filter_gradient_threshold (analyte, threshold, win=15, samples=None, subset=None)
Calculate a gradient threshold filter to the data.

Generates two filters above and below the threshold value for a given analyte.
Parameters
* analyte (str)— The analyte that the filter applies to.
* win (int)— The window over which to calculate the moving gradient

e threshold (fIloat)— The threshold value.

2.1.

LAtools Documentation 43

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

latools Documentation, Release 0.3.4-submission

e £filt (bool)— Whether or not to apply existing filters to the data before calculating this
filter.

* samples (array_like or None)- Which samples to apply this filter to. If None,
applies to all samples.

* subset (str or number) — The subset of samples (defined by make_subset) you
want to apply the filter to.

Returns
Return type None

filter_gradient_threshold_percentile (analyte, percentiles, level="population’, win=15,

filt=False, samples=None, subset=None)
Calculate a gradient threshold filter to the data.

Generates two filters above and below the threshold value for a given analyte.
Parameters
* analyte (str) - The analyte that the filter applies to.
* win (int) - The window over which to calculate the moving gradient
* percentiles (float or iterable of len=2)-The percentile values.

e filt (bool)— Whether or not to apply existing filters to the data before calculating this
filter.

* samples (array_like or None)-— Which samples to apply this filter to. If None,
applies to all samples.

* subset (str or number) — The subset of samples (defined by make_subset) you
want to apply the filter to.

Returns
Return type None

filter_nremoved (filt=True, quiet=False)
Report how many data are removed by the active filters.

filter_off (filt=None, analyte=None, samples=None, subset=None, show_status=False)
Turns data filters off for particular analytes and samples.

Parameters

e filt (optional, str or array_like)-—Name, partial name or list of names of
filters. Supports partial matching. i.e. if ‘cluster’ is specified, all filters with ‘cluster’ in
the name are activated. Defaults to all filters.

* analyte (optional, str or array_like)-—Name or list of names of analytes.
Defaults to all analytes.

* samples (optional, array like or None)-— Which samples to apply this fil-
ter to. If None, applies to all samples.

Returns
Return type None

filter_on (filt=None, analyte=None, samples=None, subset=None, show_status=False)
Turns data filters on for particular analytes and samples.

Parameters

44 Chapter 2. Function Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

latools Documentation, Release 0.3.4-submission

e filt (optional, str or array_like)-—Name, partial name or list of names of
filters. Supports partial matching. i.e. if ‘cluster’ is specified, all filters with ‘cluster’ in
the name are activated. Defaults to all filters.

* analyte (optional, str or array_like)-—Name or list of names of analytes.
Defaults to all analytes.

* samples (optional, array_like or None)— Which samples to apply this fil-
ter to. If None, applies to all samples.

Returns
Return type None

filter_reports (analytes, filt_str="all’, nbin=5, samples=None, outdir=None, sub-
set="All_Samples’)
Plot filter reports for all filters that contain £i1t_str in the name.

filter_status (sample=None, subset=None, stds=False)
Prints the current status of filters for specified samples.

Parameters
* sample (str)— Which sample to print.
* subset (str)— Specify a subset
e stds (bool)— Whether or not to include standards.

filter_threshold (analyte, threshold, samples=None, subset=None)
Applies a threshold filter to the data.

Generates two filters above and below the threshold value for a given analyte.
Parameters
* analyte (str)— The analyte that the filter applies to.
¢ threshold (f1oat) — The threshold value.

e £filt (bool)— Whether or not to apply existing filters to the data before calculating this
filter.

* samples (array_like or None)- Which samples to apply this filter to. If None,
applies to all samples.

* subset (str or number) — The subset of samples (defined by make_subset) you
want to apply the filter to.

Returns
Return type None

filter_threshold_percentile (analyte, percentiles, level="population’, filt=False, sam-

ples=None, subset=None)
Applies a threshold filter to the data.

Generates two filters above and below the threshold value for a given analyte.
Parameters
* analyte (str) - The analyte that the filter applies to.
* percentiles (float or iterable of len=2)-The percentile values.

* level (str)— Whether to calculate percentiles from the entire dataset (‘population’) or
for each individual sample (‘individual’)

2.1.

LAtools Documentation 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

latools Documentation, Release 0.3.4-submission

e £filt (bool)— Whether or not to apply existing filters to the data before calculating this
filter.

* samples (array_like or None)- Which samples to apply this filter to. If None,
applies to all samples.

* subset (str or number) — The subset of samples (defined by make_subset) you
want to apply the filter to.

Returns
Return type None

filter_trim (start=1, end=1, filt=True, samples=None, subset=None)
Remove points from the start and end of filter regions.

Parameters

* end (start,)— The number of points to remove from the start and end of the specified
filter.

e filt (valid filter string or bool)— Which filter to trim. If True, applies to
currently active filters.

find expcoef (nsd_below=0.0, analyte=None, plot=False, trimlim=None, autorange_kwargs={})
Determines exponential decay coefficient for despike filter.

Fits an exponential decay function to the washout phase of standards to determine the washout time of your
laser cell. The exponential coefficient reported is nsd_below standard deviations below the fitted exponent,
to ensure that no real data is removed.

Parameters

* nsd_below (float) — The number of standard deviations to subtract from the fitted
coefficient when calculating the filter exponent.

* analyte (str)— The analyte to consider when determining the coefficient. Use high -
concentration analyte for best estimates.

* plot (bool or str)-If True, creates a plot of the fit, if str the plot is to the location
specified in str.

* trimlim (float) — A threshold limit used in determining the start of the exponential
decay region of the washout. Defaults to half the increase in signal over background. If
the data in the plot don’t fall on an exponential decay line, change this number. Normally
you’ll need to increase it.

Returns
Return type None

fit_classifier (name, analytes, method, samples=None, subset=None, filt=True, sort_by=0,
*rkwargs)
Create a clustering classifier based on all samples, or a subset.

Parameters
¢ name (str)— The name of the classifier.

* analytes (str or iterable) — Which analytes the clustering algorithm should
consider.

* method (st r)— Which clustering algorithm to use. Can be:

’meanshift’ The sklearn.cluster MeanShift algorithm. Automatically determines number
of clusters in data based on the bandwidth of expected variation.

46 Chapter 2. Function Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

latools Documentation, Release 0.3.4-submission

’kmeans’ The sklearn.cluster KMeans algorithm. Determines the characteristics of a
known number of clusters within the data. Must provide n_clusters to specify the ex-
pected number of clusters.

e samples (iterable) - list of samples to consider. Overrides ‘subset’.

* subset (str)— The subset of samples used to fit the classifier. Ignored if ‘samples’ is
specified.

* sort_by (int)— Which analyte the resulting clusters should be sorted by - defaults to
0, which is the first analyte.

* xxkwargs — method-specific keyword parameters - see below.
e Parameters (Meanshift)—

bandwidth [str or float] The bandwith (float) or bandwidth method (‘scott’ or ‘silver-
man’) used to estimate the data bandwidth.

bin_seeding [bool] Modifies the behaviour of the meanshift algorithm. Refer to
sklearn.cluster.meanshift documentation.

e — Means Parameters (XK)—
n_clusters [int] The number of clusters expected in the data.
Returns name
Return type str

get_background (n_min=10, n_max=None, focus_stage=’despiked’, bkg_filter=False, f win=3,
f.n_lim=3)
Extract all background data from all samples on universal time scale. Used by both ‘polynomial’ and
‘weightedmean’ methods.

Parameters

* n_min (int) — The minimum number of points a background region must have to be
included in calculation.

* n_max (int) — The maximum number of points a background region must have to be
included in calculation.

» filter (bool) — If true, apply a rolling filter to the isolated background regions to
exclude regions with anomalously high values. If True, two parameters alter the filter’s
behaviour:

e £ win (int) - The size of the rolling window

e £ n_lim (float)— The number of standard deviations above the rolling mean to set
the threshold.

Returns
Return type pandas.DataFrame object containing background data.

get_focus (filt=False, samples=None, subset=None, nominal=False)
Collect all data from all samples into a single array. Data from standards is not collected.

Parameters

e £filt (str, dict or bool) — Either logical filter expression contained in a str, a
dict of expressions specifying the filter string to use for each analyte or a boolean. Passed
to grab_filt.

e samples (str or 1ist)— which samples to get

2.1.

LAtools Documentation 47

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

latools Documentation, Release 0.3.4-submission

* subset (str or int)— which subsetto get
Returns
Return type None

get_gradients (analytes=None, win=15, filt=False, samples=None, subset=None)
Collect all data from all samples into a single array. Data from standards is not collected.

Parameters

e filt (str, dict or bool) — Either logical filter expression contained in a str, a
dict of expressions specifying the filter string to use for each analyte or a boolean. Passed
to grab_filt.

* samples (str or 1ist)— whichsamples to get
* subset (str or int)- which subset to get
Returns
Return type None

getstats (save=True, filename=None, samples=None, subset=None, ablation_time=False)
Return pandas dataframe of all sample statistics.

gradient_crossplot (analytes=None, win=15, lognorm=True, bins=25, filt=False, samples=None,
subset=None, figsize=(12, 12), save=False, colourful=True, mode="hist2d’,

**kwargs)
Plot analyte gradients against each other.

Parameters

* analytes (optional, array_like or str)-— The analyte(s) to plot. Defaults
to all analytes.

* lognorm (bool)— Whether or not to log normalise the colour scale of the 2D histogram.
* bins (int)— The number of bins in the 2D histogram.

e filt (str, dict or bool) — Either logical filter expression contained in a str, a
dict of expressions specifying the filter string to use for each analyte or a boolean. Passed
to grab_filt.

e figsize (tuple) — Figure size (width, height) in inches.

* save (bool or str)-If True, plot is saves as ‘crossplot.png’, if str plot is saves as
Str.

* colourful (bool)— Whether or not the plot should be colourful :).
¢ mode (str) - ‘hist2d’ (default) or ‘scatter’

Returns

Return type (fig, axes)

gradient_histogram (analytes=None, win=15, filt=False, bins=None, samples=None, sub-

set=None)
Plot a histogram of the gradients in all samples.

Parameters

e £filt (str, dict or bool) — Either logical filter expression contained in a str, a
dict of expressions specifying the filter string to use for each analyte or a boolean. Passed
to grab_{filt.

48 Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

latools Documentation, Release 0.3.4-submission

* bins (None or array-like)—The bins to use in the histogram
e samples (str or 1ist)— which samples to get
* subset (str or int)- which subset to get

Returns

Return type fig, ax

gradient_plots (analytes=None, win=15, samples=None, ranges=False, focus=None, out-
dir=None, figsize=[10, 4], subset="All_Analyses’)
Plot analyte gradients as a function of time.

Parameters

* analytes (optional, array_like or str) - The analyte(s) to plot. Defaults
to all analytes.

* samples (optional, array_like or str)-The sample(s) to plot. Defaults to
all samples.

* ranges (bool) — Whether or not to show the signal/backgroudn regions identified by
‘autorange’.

e focus (str)— The focus ‘stage’ of the analysis to plot. Can be ‘rawdata’, ‘despiked’:,
‘signal’, ‘background’, ‘bkgsub’, ‘ratios’ or ‘calibrated’.

* outdir (str) — Path to a directory where you’d like the plots to be saved. Defaults to
‘reports/[focus]’ in your data directory.

e filt (str, dict or bool) — Either logical filter expression contained in a str, a
dict of expressions specifying the filter string to use for each analyte or a boolean. Passed
to grab_filt.

e scale (str)—If ‘log’, plots the data on a log scale.
» figsize (array_Ilike)— Array of length 2 specifying figure [width, height] in inches.

* stats (bool) — Whether or not to overlay the mean and standard deviations for each
trace.

* err (stat,) — The names of the statistic and error components to plot. Deafaults to
‘nanmean’ and ‘nanstd’.

Returns
Return type None

histograms (analytes=None, bins=25, logy=False, filt=False, colourful=True)
Plot histograms of analytes.

Parameters

* analytes (optional, array_like or str) - The analyte(s) to plot. Defaults
to all analytes.

* bins (int) - The number of bins in each histogram (default = 25)
* logy (bool)—If true, y axis is a log scale.

e £ilt (str, dict or bool) — Either logical filter expression contained in a str, a
dict of expressions specifying the filter string to use for each analyte or a boolean. Passed
to grab_filt.

* colourful (bool) - If True, histograms are colourful :)

2.1. LAtools Documentation 49

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stat.html#module-stat
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

latools Documentation, Release 0.3.4-submission

Returns
Return type (fig, axes)

make_subset (samples=None, name=None)
Creates a subset of samples, which can be treated independently.

Parameters
* samples (str or array - like)-—Name of sample, or list of sample names.

* name ((optional) str or number)- The name of the sample group. Defaults to
n + 1, where n is the highest existing group number

minimal_export (target_analytes=None, override=False, path=None)
Exports a analysis parameters, standard info and a minimal dataset, which can be imported by another
user.

optimisation_plots (overlay_alpha=0.5, samples=None, subset=None, **kwargs)
Plot the result of signal_optimise.

signal_optimiser must be run first, and the output stored in the opt attribute of the latools.D object.
Parameters
e d(latools.D object)— A latools data object.
* overlay_alpha (float)— The opacity of the threshold overlays. Between O and 1.
* xxkwargs — Passed to tplot

optimise_signal (analytes, min_points=5, threshold_mode="kde_first_max’, threshold_mult=1.0,
x_bias=0, filt=True, weights=None, samples=None, subset=None)
Optimise data selection based on specified analytes.

Identifies the longest possible contiguous data region in the signal where the relative standard deviation
(std) and concentration of all analytes is minimised.

Optimisation is performed via a grid search of all possible contiguous data regions. For each region, the
mean std and mean scaled analyte concentration (‘amplitude’) are calculated.

The size and position of the optimal data region are identified using threshold std and amplitude values.
Thresholds are derived from all calculated stds and amplitudes using the method specified by thresh-
old_mode. For example, using the ‘kde_max’ method, a probability density function (PDF) is calculated
for std and amplitude values, and the threshold is set as the maximum of the PDF. These thresholds are
then used to identify the size and position of the longest contiguous region where the std is below the
threshold, and the amplitude is either below the threshold.

All possible regions of the data that have at least min_points are considered.
For a graphical demonstration of the action of signal_optimiser, use optimisation_plot.
Parameters
e d(latools.D object)— An latools data object.
* analytes (str or array-1ike)-— Which analytes to consider.
* min_points (int) - The minimum number of contiguous points to consider.

* threshold_mode (str) — The method used to calculate the optimisation thresholds.
Can be ‘mean’, ‘median’, ‘kde_max’ or ‘bayes_mvs’, or a custom function. If a function,
must take a 1D array, and return a single, real number.

50 Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

latools Documentation, Release 0.3.4-submission

* weights (array-like of length len(analytes)) — An array of numbers
specifying the importance of each analyte considered. Larger number makes the analyte
have a greater effect on the optimisation. Default is None.

ratio (internal_standard=None, focus="bkgsub’)
Calculates the ratio of all analytes to a single analyte.

Parameters
* internal_standard (st r)— The name of the analyte to divide all other analytes by.
* focus (str) - The focus stage of the data used to calculating the ratios.

Returns

Return type None

sample_stats (analytes=None, filt=True, stats=['mean’, ’std’], eachtrace=True, csf_dict={})
Calculate sample statistics.

Returns samples, analytes, and arrays of statistics of shape (samples, analytes). Statistics are calculated
from the ‘focus’ data variable, so output depends on how the data have been processed.

Included stat functions:
* mean () : arithmetic mean
e std(): arithmetic standard deviation
* se (): arithmetic standard error
* H15_mean () : Huber mean (outlier removal)
e H15_std (): Huber standard deviation (outlier removal)

e H15_se (): Huber standard error (outlier removal)

Parameters

* analytes (optional, array_like or str)-The analyte(s)to calculate statis-
tics for. Defaults to all analytes.

e £filt (str, dict or bool) — Either logical filter expression contained in a str, a
dict of expressions specifying the filter string to use for each analyte or a boolean. Passed
to grab_filt.

* stats (array_like) - take a single array_like input, and return a single statistic. list
of functions or names (see above) or functions that Function should be able to cope with
NaN values.

* eachtrace (bool)— Whether to calculate the statistics for each analysis spot individu-
ally, or to produce per - sample means. Default is True.

Returns Adds dict to analyse object containing samples, analytes and functions and data.
Return type None
set_focus (focus_stage=None, samples=None, subset=None)
Set the ‘focus’ attribute of the data file.

The ‘focus’ attribute of the object points towards data from a particular stage of analysis. It is used to
identify the ‘working stage’ of the data. Processing functions operate on the ‘focus’ stage, so if steps are
done out of sequence, things will break.

Names of analysis stages:

2.1.

LAtools Documentation 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

latools Documentation, Release 0.3.4-submission

* ‘rawdata’: raw data, loaded from csv file when object is initialised.

 ‘despiked’: despiked data.

 ‘signal’/’background’: isolated signal and background data, padded with np.nan. Created by
self.separate, after signal and background regions have been identified by self.autorange.

* ‘bkgsub’: background subtracted data, created by self.bkg_correct

 ‘ratios’: element ratio data, created by self.ratio.

* ‘calibrated’: ratio data calibrated to standards, created by self.calibrate.

Parameters focus (st r)— The name of the analysis stage desired.

Returns

Return type None

srm_id_auto (srms_used=["NIST610’°, 'NIST612’, 'NIST614’], n_min=10)
Function for automarically identifying SRMs

Parameters

srms_used (iterable) — Which SRMs have been used. Must match SRM names in
SRM database exactly (case sensitive!).

n_min (int) — The minimum number of data points a SRM measurement must contain
to be included.

statplot (analytes=None, samples=None, figsize=None, stat="mean’, err="std’, subset=None)
Function for visualising per-ablation and per-sample means.

Parameters

analytes (str or iterable)- Which analyte(s) to plot
samples (str or iterable)— Which sample(s) to plot
figsize (tuple)— Figure (width, height) in inches

stat (str) — Which statistic to plot. Must match the name of the functions used in
‘sample_stats’.

err (str)— Which uncertainty to plot.

subset (st r)— Which subset of samples to plot.

trace_plots (analytes=None, samples=None, ranges=False, focus=None, outdir=None, filt=None,

scale="log’, figsize=[10, 4], stats=False, stat="nanmean’, err="nanstd’, sub-
set="All_Analyses’)

Plot analytes as a function of time.

Parameters

analytes (optional, array_like or str)— The analyte(s) to plot. Defaults
to all analytes.

samples (optional, array_like or str)-The sample(s) to plot. Defaults to
all samples.

ranges (bool) — Whether or not to show the signal/backgroudn regions identified by
‘autorange’.

focus (str) — The focus ‘stage’ of the analysis to plot. Can be ‘rawdata’, ‘despiked’:,
‘signal’, ‘background’, ‘bkgsub’, ‘ratios’ or ‘calibrated’.

52

Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

latools Documentation, Release 0.3.4-submission

* outdir (str) — Path to a directory where you’d like the plots to be saved. Defaults to
‘reports/[focus]’ in your data directory.

e filt (str, dict or bool) — Either logical filter expression contained in a str, a
dict of expressions specifying the filter string to use for each analyte or a boolean. Passed
to grab_{filt.

e scale (str)—If ‘log’, plots the data on a log scale.
» figsize (array_1ike)— Array of length 2 specifying figure [width, height] in inches.

* stats (bool) — Whether or not to overlay the mean and standard deviations for each
trace.

* err (stat,) — The names of the statistic and error components to plot. Deafaults to
‘nanmean’ and ‘nanstd’.

Returns
Return type None

zeroscreen (focus_stage=None)
Remove all points containing data below zero (which are impossible!)

latools.latools.analyze
alias of analyse

latools.latools.reproduce (log_file, plotting=False, data_folder=None, srm_table=None, cus-

tom_stat_functions=None)
Reproduce a previous analysis exported with latools.analyse.minimal_export ()

For normal use, supplying log_file and specifying a plotting option should be enough to reproduce an analy-
sis. All requisites (raw data, SRM table and any custom stat functions) will then be imported from the mini-
mal_export folder.

You may also specify your own raw_data, srm_table and custom_stat_functions, if you wish.
Parameters
* log_file (str)— The path to the log file produced by minimal_export ().
* plotting (bool)— Whether or not to output plots.

* data_ folder (str) — Optional. Specify a different data folder. Data folder should
normally be in the same folder as the log file.

* srm_table (str)— Optional. Specify a different SRM table. SRM table should normally
be in the same folder as the log file.

* custom_stat_functions (str)— Optional. Specify a python file containing custom
stat functions for use by reproduce. Any custom stat functions should normally be included
in the same folder as the log file.

2.1.2 latools.D object

The Data object, used to contain single laser ablation data files.

class latools.D_obj.D (data_file, dataformat=None, errorhunt=False, —cmap=None, inter-

nal_standard="Ca43’, name="file_names’)
Bases: object

Container for data from a single laser ablation analysis.

Parameters

2.1. LAtools Documentation 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stat.html#module-stat
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

latools Documentation, Release 0.3.4-submission

* data_file (str)— The path to a data file.

* errorhunt (bool)— Whether or not to print each data file name before import. This is
useful for tracing which data file is causing the import to fail.

* dataformat (str or dict)— Either a path to a data format file, or a dataformat dict.
See documentation for more details.

sample
str — Sample name.

meta
dict — Metadata extracted from the csv header. Contents varies, depending on your dataformat.

analytes
array_like — A list of analytes measured.

data
dict — A dictionary containing the raw data, and modified data from each processing stage. Entries can be:

» ‘rawdata’: created during initialisation.
 ‘despiked’: created by despike
 ‘signal’: created by autorange

* ‘background’: created by autorange

* ‘bkgsub’: created by bkg_correct

* ‘ratios’: created by ratio

e ‘calibrated’: created by calibrate

focus
dict — A dictionary containing one item from data. This is the currently ‘active’ data that processing
functions will work on. This data is also directly available as class attributes with the same names as the
items in focus.

focus_stage
str — Identifies which item in data is currently assigned to focus.

cmap
dict — A dictionary containing hex colour strings corresponding to each measured analyte.

bkg, sig, trn
array_like, bool — Boolean arrays identifying signal, background and transition regions. Created by autor-
ange.

bkgrng, sigrng, trnrng
array_like — An array of shape (n, 2) containing pairs of values that describe the Time limits of background,
signal and transition regions.

ns
array_like — An integer array the same length as the data, where each analysis spot is labelled with a unique
number. Used for separating analysis spots when calculating sample statistics.

filt

filt object — An object for storing, selecting and creating data filters.F

ablation_times ()
Function for calculating the ablation time for each ablation.

Returns

54

Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

latools Documentation, Release 0.3.4-submission

Return type dict of times for each ablation.

autorange (analyte="total_counts’, gwin=5, swin=3, win=30, on_mult=[1.0, 1.0], off_mult=[1.0,

1.5], nbin=10, ploterrs=True, bkg_thresh=None, transform="log’, **kwargs)
Automatically separates signal and background data regions.

Automatically detect signal and background regions in the laser data, based on the behaviour of a single
analyte. The analyte used should be abundant and homogenous in the sample.

Step 1: Thresholding. The background signal is determined using a gaussian kernel density estimator
(kde) of all the data. Under normal circumstances, this kde should find two distinct data distributions,
corresponding to ‘signal’ and ‘background’. The minima between these two distributions is taken as a
rough threshold to identify signal and background regions. Any point where the trace crosses this thrshold
is identified as a ‘transition’.

Step 2: Transition Removal. The width of the transition regions between signal and background are then
determined, and the transitions are excluded from analysis. The width of the transitions is determined by
fitting a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point
where the gaussian intensity is at at conf time the gaussian maximum. These gaussians are fit to subsets
of the data centered around the transitions regions determined in Step 1, 4+/- win data points. The peak
is further isolated by finding the minima and maxima of a second derivative within this window, and the
gaussian is fit to the isolated peak.

Parameters

* analyte (str) — The analyte that autorange should consider. For best results, choose
an analyte that is present homogeneously in high concentrations.

* gwin (int) — The smoothing window used for calculating the first derivative. Must be
odd.

e win (int) - Determines the width (¢ +/- win) of the transition data subsets.

e and off mult (on_mult) — Factors to control the width of the excluded transition
regions. A region n times the full - width - half - maximum of the transition gradient will
be removed either side of the transition center. on_mult and off_mult refer to the laser - on
and laser - off transitions, respectively. See manual for full explanation. Defaults to (1.5,
1) and (1, 1.5).

Returns
* Qutputs added as instance attributes. Returns None.

* bkg, sig, trn (iterable, bool) — Boolean arrays identifying background, signal and transi-
sion regions

¢ bkgrng, sigrng and trnrng (iferable) — (min, max) pairs identifying the boundaries of
contiguous True regions in the boolean arrays.

autorange_plot (analyte="total_counts’, gwin=7, swin=None, win=20, on_mult=[1.5, 1.0],

off_mult=[1.0, 1.5], transform="log’, nbin=10)
Plot a detailed autorange report for this sample.

bkg_subtract (analyte, bkg, ind=None, focus_stage="despiked’)
Subtract provided background from signal (focus stage).

Results is saved in new ‘bkgsub’ focus stage
Returns
Return type None

calibrate (calib_ps, analytes=None)
Apply calibration to data.

2.1. LAtools Documentation 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

latools Documentation, Release 0.3.4-submission

The calib_dict must be calculated at the analyse level, and passed to this calibrate function.
Parameters calib_dict (dict) — A dict of calibration values to apply to each analyte.
Returns
Return type None

crossplot (analytes=None, bins=25, lognorm=True, filt=True, colourful=True, figsize=(12, 12))
Plot analytes against each other.

Parameters

* analytes (optional, array_like or str)-— The analyte(s) to plot. Defaults
to all analytes.

* lognorm (bool)— Whether or not to log normalise the colour scale of the 2D histogram.
* bins (int)— The number of bins in the 2D histogram.

e filt (str, dict or bool) — Either logical filter expression contained in a str, a
dict of expressions specifying the filter string to use for each analyte or a boolean. Passed
to grab_{filt.

Returns
Return type (fig, axes)

crossplot_filters (filter_string, analytes=None)
Plot the results of a group of filters in a crossplot.

Parameters

e filter_string (str)— A string that identifies a group of filters. e.g. ‘test’” would
plot all filters with ‘test’” in the name.

* analytes (optional, array_like or str)- The analyte(s) to plot. Defaults
to all analytes.

Returns
Return type fig, axes objects
despike (expdecay_despiker=True, exponent=None, noise_despiker=True, win=3, nlim=12.0, max-
Applielsteei;(zpfi)ecay_despiker and noise_despiker to data.
Parameters

* expdecay_despiker (bool)— Whether or not to apply the exponential decay filter.

* exponent (None or float)-Theexponentforthe exponential decay filter. If None,
it is determined automatically using find_expocoef.

* noise_despiker (bool)— Whether or not to apply the standard deviation spike filter.
* win (int)— The rolling window over which the spike filter calculates the trace statistics.

* nlim (float)— The number of standard deviations above the rolling mean that data are
excluded.

* maxiter (int)— The max number of times that the fitler is applied.
Returns
Return type None

filt_nremoved (filt=True)

56 Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

latools Documentation, Release 0.3.4-submission

filter_clustering (analytes, filt=False, normalise=True, method="meanshift’, in-

clude_time=False, sort=None, min_data=10, **kwargs)

Applies an n - dimensional clustering filter to the data.

Auvailable Clustering Algorithms

* ‘meanshift’: The sklearn.cluster.MeanShift algorithm. Automatically determines number of clusters
in data based on the bandwidth of expected variation.

* ‘kmeans’: The sklearn.cluster KMeans algorithm. Determines the characteristics of a known number
of clusters within the data. Must provide n_clusters to specify the expected number of clusters.

e ‘DBSCAN’: The sklearn.cluster DBSCAN algorithm. Automatically determines the number and char-
acteristics of clusters within the data based on the ‘connectivity’ of the data (i.e. how far apart each
data point is in a multi - dimensional parameter space). Requires you to set eps, the minimum dis-
tance point must be from another point to be considered in the same cluster, and min_samples, the
minimum number of points that must be within the minimum distance for it to be considered a cluster.
It may also be run in automatic mode by specifying n_clusters alongside min_samples, where eps is
decreased until the desired number of clusters is obtained.

For more information on these algorithms, refer to the documentation.

Parameters

analytes (st r)— The analyte(s) that the filter applies to.

£ilt (bool)— Whether or not to apply existing filters to the data before calculating this
filter.

normalise (bool) — Whether or not to normalise the data to zero mean and
unit variance. Reccomended if clustering based on more than 1 analyte. Uses
sklearn.preprocessing.scale.

method (st r) — Which clustering algorithm to use (see above).

include_time (bool)— Whether or not to include the Time variable in the clustering
analysis. Useful if you’re looking for spatially continuous clusters in your data, i.e. this
will identify each spot in your analysis as an individual cluster.

sort (bool, str or array-1ike)— Whether or not to label the resulting clusters
according to their contents. If used, the cluster with the lowest values will be labelled
from O, in order of increasing cluster mean value.analytes. The sorting rules depend on
the value of ‘sort’, which can be the name of a single analyte (str), a list of several analyte
names (array-like) or True (bool), to specify all analytes used to calcualte the cluster.

min_data (int) — The minimum number of data points that should be considered by
the filter. Default = 10.

*»xkwargs — Parameters passed to the clustering algorithm specified by method.

Parameters (DBSCAN) —

bandwidth (str or float)- The bandwith (float) or bandwidth method (‘scott’ or
‘silverman’) used to estimate the data bandwidth.

bin_seeding (bool) — Modifies the behaviour of the meanshift algorithm. Refer to
sklearn.cluster.meanshift documentation.

- Means Parameters (XK)—

n_clusters (int)— The number of clusters expected in the data.

2.1. LAtools Documentation

57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

latools Documentation, Release 0.3.4-submission

* Parameters —

* eps (float)— The minimum ‘distance’ points must be apart for them to be in the same
cluster. Defaults to 0.3. Note: If the data are normalised (they should be for DBSCAN)
this is in terms of total sample variance. Normalised data have a mean of O and a variance
of 1.

* min_samples (int) — The minimum number of samples within distance eps required
to be considered as an independent cluster.

* n_clusters — The number of clusters expected. If specified, eps will be incrementally
reduced until the expected number of clusters is found.

* maxiter (int) - The maximum number of iterations DBSCAN will run.
Returns
Return type None

filter_correlation (x_analyte, y_analyte, window=None, r_threshold=0.9, p_threshold=0.05,

filt=True)
Apply correlation filter.

Parameters
* y_analyte (x_analyte,)— The names of the x and y analytes to correlate.
* window (int, None)— The rolling window used when calculating the correlation.

e r threshold (float)- The correlation index above which to exclude data. Note: the
absolute pearson R value is considered, so negative correlations below -r_threshold will
also be excluded.

* p_threshold (float) - The significant level below which data are excluded.

e filt (bool)— Whether or not to apply existing filters to the data before calculating this
filter.

Returns
Return type None

filter_exclude_downhole (threshold, filt=True)
Exclude all points down-hole (after) the first excluded data.

Parameters

* threhold (int)— The minimum number of contiguous excluded data points that must
exist before downhole exclusion occurs.

e file (valid filter string or bool)— Which filter to consider. If True, ap-
plies to currently active filters.

filter_gradient_threshold (analyte, win, threshold)
Apply gradient threshold filter.

Generates threshold filters for the given analytes above and below the specified threshold.

3

Two filters are created with prefixes ‘_above’ and ¢_below’.
threshold. ‘_below’ keeps all the data below the threshold.

_above’ keeps all the data above the

i.e. to select data below the threshold value, you should turn the ‘_above’ filter off.

Parameters

58 Chapter 2. Function Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

latools Documentation, Release 0.3.4-submission

* analyte (TYPE) — Description of analyte.

* threshold (TYPE) — Description of threshold.
Returns
Return type None

filter_new (name, filt_str)
Make new filter from combination of other filters.

Parameters
* name (st r)— The name of the new filter. Should be unique.

e £filt_str (str) — A logical combination of partial strings which will create the new
filter. For example, ‘Albelow & Mnbelow’ will combine all filters that partially match
‘Albelow’ with those that partially match ‘Mnbelow’ using the ‘AND’ logical operator.

Returns
Return type None

filter_report (filt=None, analytes=None, savedir=None, nbin=>5)
Visualise effect of data filters.

Parameters

e £ilt (str) — Exact or partial name of filter to plot. Supports partial matching. i.e. if
‘cluster’ is specified, all filters with ‘cluster’ in the name will be plotted. Defaults to all
filters.

* analyte (str)— Name of analyte to plot.
* save (str) —file path to save the plot
Returns
Return type (fig, axes)

filter_threshold (analyte, threshold)
Apply threshold filter.

Generates threshold filters for the given analytes above and below the specified threshold.

Two filters are created with prefixes ‘¢_above’ and ‘_below’. ‘_above’ keeps all the data above the
threshold. ‘_below’ keeps all the data below the threshold.

i.e. to select data below the threshold value, you should turn the ‘_above’ filter off.
Parameters
* analyte (TYPE) — Description of analyte.
* threshold (TYPE) — Description of threshold.
Returns
Return type None

filter_trim (start=1, end=1, filt=True)
Remove points from the start and end of filter regions.

Parameters

* end (start,) — The number of points to remove from the start and end of the specified
filter.

2.1.

LAtools Documentation 59

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

latools Documentation, Release 0.3.4-submission

e filt (valid filter string or bool)— Which filter to trim. If True, applies to
currently active filters.

get_params ()
Returns paramters used to process data.

Returns dict of analysis parameters
Return type dict

gplot (analytes=None, win=35, figsize=[10, 4], ranges=False, focus_stage=None)
Plot analytes gradients as a function of Time.

Parameters

* analytes (array_like) — list of strings containing names of analytes to plot. None
= all analytes.

e win (int)— The window over which to calculate the rolling gradient.
» figsize (tuple) - size of final figure.
* ranges (bool) — show signal/background regions.

Returns

Return type figure, axis

mkrngs ()
Transform boolean arrays into list of limit pairs.

Gets Time limits of signal/background boolean arrays and stores them as sigrng and bkgrng arrays. These
arrays can be saved by ‘save_ranges’ in the analyse object.

optimisation_plot (overlay_alpha=0.5, **kwargs)
Plot the result of signal_optimise.

signal_optimiser must be run first, and the output stored in the opt attribute of the latools.D object.
Parameters
e d(latools.D object)— A latools data object.
* overlay_ alpha (float)— The opacity of the threshold overlays. Between 0 and 1.
* xxkwargs — Passed to tplot

ratio (internal_standard=None, focus="bkgsub’)
Divide all analytes by a specified internal_standard analyte.

Parameters

* internal_standard (str) — The analyte used as the internal_standard.

» focus (st r)—The analysis stage to perform the ratio calculation on. Defaults to ‘signal’.
Returns
Return type None

sample_stats (analytes=None, filt=True, stat_fns={}, eachtrace=True)
Calculate sample statistics

Returns samples, analytes, and arrays of statistics of shape (samples, analytes). Statistics are calculated
from the ‘focus’ data variable, so output depends on how the data have been processed.

Parameters

60 Chapter 2. Function Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

latools Documentation, Release 0.3.4-submission

* analytes (array_1like)— List of analytes to calculate the statistic on
e filt (bool or str)-—

The filter to apply to the data when calculating sample statistics. bool: True applies
filter specified in filt.switches. str: logical string specifying a partucular filter

* stat_fns (dict) — Dict of {name: function} pairs. Functions that take a single ar-
ray_like input, and return a single statistic. Function should be able to cope with NaN
values.

* eachtrace (bool)— True: per - ablation statistics False: whole sample statistics
Returns
Return type None

setfocus (focus)
Set the ‘focus’ attribute of the data file.

The ‘focus’ attribute of the object points towards data from a particular stage of analysis. It is used to
identify the ‘working stage’ of the data. Processing functions operate on the ‘focus’ stage, so if steps are
done out of sequence, things will break.

Names of analysis stages:
* ‘rawdata’: raw data, loaded from csv file when object is initialised.
 ‘despiked’: despiked data.

* ‘signal’/’background’: isolated signal and background data, padded with np.nan. Created by
self.separate, after signal and background regions have been identified by self.autorange.

* ‘bkgsub’: background subtracted data, created by self.bkg_correct
* ‘ratios’: element ratio data, created by self.ratio.

* ‘calibrated’: ratio data calibrated to standards, created by self.calibrate.

Parameters focus (st r)— The name of the analysis stage desired.
Returns

Return type None

signal_optimiser (analytes, min_points=35, threshold_mode="kde_first_max’, threshold_mult=1.0,
x_bias=0, weights=None, filt=True)
Optimise data selection based on specified analytes.

Identifies the longest possible contiguous data region in the signal where the relative standard deviation
(std) and concentration of all analytes is minimised.

Optimisation is performed via a grid search of all possible contiguous data regions. For each region, the
mean std and mean scaled analyte concentration (‘amplitude’) are calculated.

The size and position of the optimal data region are identified using threshold std and amplitude values.
Thresholds are derived from all calculated stds and amplitudes using the method specified by thresh-
old_mode. For example, using the ‘kde_max’ method, a probability density function (PDF) is calculated
for std and amplitude values, and the threshold is set as the maximum of the PDF. These thresholds are
then used to identify the size and position of the longest contiguous region where the std is below the
threshold, and the amplitude is either below the threshold.

All possible regions of the data that have at least min_points are considered.

For a graphical demonstration of the action of signal_optimiser, use optimisation_plot.

2.1. LAtools Documentation 61

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

latools Documentation, Release 0.3.4-submission

Parameters
e d(latools.D object)— An latools data object.
* analytes (str or array-1ike)-— Which analytes to consider.
* min_points (int) - The minimum number of contiguous points to consider.

* threshold_mode (str) — The method used to calculate the optimisation thresholds.
Can be ‘mean’, ‘median’, ‘kde_max’ or ‘bayes_mvs’, or a custom function. If a function,
must take a 1D array, and return a single, real number.

* weights (array-like of length len(analytes)) — An array of numbers
specifying the importance of each analyte considered. Larger number makes the analyte
have a greater effect on the optimisation. Default is None.

tplot (analytes=None, figsize=[10, 4], scale=’log’, filt=None, ranges=False, stats=False,
stat="nanmean’, err="nanstd’, interactive=False, focus_stage=None, err_envelope=False,

ax=None)))
Plot analytes as a function of Time.

Parameters

* analytes (array_like) — list of strings containing names of analytes to plot. None
= all analytes.

e figsize (tuple) - size of final figure.
* scale(str or None)- ‘log’ =plot data on log scale

e filt (bool, str or dict) - False: plot unfiltered data. True: plot filtered data
over unfiltered data. str: apply filter key to all analytes dict: apply key to each analyte in
dict. Must contain all analytes plotted. Can use self filt.keydict.

* ranges (bool) — show signal/background regions.
* stats (boo1l) - plot average and error of each trace, as specified by stat and err.
e stat (str)— average statistic to plot.
* err (str)—error statistic to plot.
e interactive (bool)— Make the plot interactive.
Returns

Return type figure, axis

2.1.3 Filtering

class latools.filtering.filt_obj.£ilt (size, analytes)
Bases: object

Container for creating, storing and selecting data filters.
Parameters
* size (int) - The length that the filters need to be (should be the same as your data).
* analytes (array_like)— A list of the analytes measured in your data.

size
int — The length that the filters need to be (should be the same as your data).

62 Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

latools Documentation, Release 0.3.4-submission

analytes
array_like — A list of the analytes measured in your data.

components
dict — A dict containing each individual filter that has been created.

info
dict — A dict containing descriptive information about each filter in components.

params
dict — A dict containing the parameters used to create each filter, which can be passed directly to the
corresponding filter function to recreate the filter.

switches
dict — A dict of boolean switches specifying which filters are active for each analyte.

keys
dict — A dict of logical strings specifying which filters are applied to each analyte.

sequence
dict — A numbered dict specifying what order the filters were applied in (for some filters, order matters).

int — The number of filters applied to the data.

add (name, filt, info="", params=(), setn=None)
Add filter.

Parameters

¢ name (str) - filter name

e filt (array_1ike)— boolean filter array

* info (str) - informative description of the filter

* params (tuple) — parameters used to make the filter
Returns
Return type None

clean ()
Remove unused filters.

clear ()
Clear all filters.

fuzzmatch (fuzzkey, multi=False)
Identify a filter by fuzzy string matching.

Partial (‘fuzzy’) matching performed by fuzzywuzzy.fuzzy.ratio

Parameters fuzzkey (str) — A string that partially matches one filter name more than the
others.

Returns The name of the most closely matched filter.
Return type str

get_components (key, analyte=None)
Extract filter components for specific analyte(s).

Parameters

2.1.

LAtools Documentation 63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

latools Documentation, Release 0.3.4-submission

* key (str) — string present in one or more filter names. e.g. ‘Al27° will return all filters
with ‘Al27’ in their names.

* analyte (str)—name of analyte the filter is for
Returns boolean filter
Return type array-like

get_info ()
Get info for all filters.

grab_filt (filt, analyte=None)
Flexible access to specific filter using any key format.

Parameters

e f (str, dict or bool) — either logical filter expression, dict of expressions, or a
boolean

* analyte (str)—name of analyte the filter is for.
Returns boolean filter
Return type array_like

make (analyte)
Make filter for specified analyte(s).

Filter specified in filt.switches.
Parameters analyte (str or array_like)—Name or list of names of analytes.
Returns boolean filter
Return type array_like

make_fromkey (key)
Make filter from logical expression.

Takes a logical expression as an input, and returns a filter. Used for advanced filtering, where combinations
of nested and/or filters are desired. Filter names must exactly match the names listed by print(filt).

Example: key = ' (Filter_1 | Filter_2) & Filter_3'isequivalentto: (Filter_1 OR
Filter_2) AND Filter_3 statements in parentheses are evaluated first.

Parameters key (st r)—logical expression describing filter construction.
Returns boolean filter
Return type array_like

make_keydict (analyte=None)
Make logical expressions describing the filter(s) for specified analyte(s).

Parameters analyte (optional, str or array_like)— Name or list of names of
analytes. Defaults to all analytes.

Returns containing the logical filter expression for each analyte.
Return type dict

of £ (analyte=None, filt=None)
Turn off specified filter(s) for specified analyte(s).

Parameters

64 Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

latools Documentation, Release 0.3.4-submission

* analyte (optional, str or array_like)—Name or list of names of analytes.
Defaults to all analytes.

e £filt (optional. int, list of int or str) — Number(s) or partial string
that corresponds to filter name(s).

Returns
Return type None

on (analyte=None, filt=None)
Turn on specified filter(s) for specified analyte(s).

Parameters

* analyte (optional, str or array_like)—Name or list of names of analytes.
Defaults to all analytes.

e filt (optional. int, str or array_like) — Name/number or iterable
names/numbers of filters.

Returns
Return type None

remove (name=None, setn=None)
Remove filter.

Parameters
* name (st r)—name of the filter to remove

e setn (int or True)-int: number of set to remove True: remove all filters in set that
‘name’ belongs to

Returns
Return type None
Functions for automatic selection optimisation.

latools.filtering.signal_optimiser.bayes_scale (s)
Remove mean and divide by standard deviation, using bayes_kvm statistics.

latools.filtering.signal_optimiser.calc_window_mean_std (s, min_points, ind=None)
Apply fn to all contiguous regions in s that have at least min_points.

latools.filtering.signal_optimiser.calc_windows (fn, s, min_points)
Apply fn to all contiguous regions in s that have at least min_points.

latools.filtering.signal_optimiser.calculate_optimisation_stats (d, analytes,

min_points,
weights, ind,
x_bias=0)
latools.filtering.signal_optimiser.median_scaler (s)
Remove median, divide by IQR.
latools.filtering.signal_optimiser.optimisation_plot (d, overlay_alpha=0.5,

**kwargs)
Plot the result of signal_optimise.

signal_optimiser must be run first, and the output stored in the opt attribute of the latools.D object.
Parameters

* d(latools.D object)— A latools data object.

2.1. LAtools Documentation 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None

latools Documentation, Release 0.3.4-submission

* overlay_alpha (float)— The opacity of the threshold overlays. Between 0 and 1.
* xxkwargs — Passed to #plot

latools.filtering.signal_optimiser.scale (s)
Remove the mean, and divide by the standard deviation.

latools.filtering.signal_optimiser.scaler (s)
Remove median, divide by IQR.

latools.filtering.signal_optimiser.signal_optimiser (d, analytes,
min_points=35, thresh-
old_mode="kde_first_max’,
threshold_mult=1.0, x_bias=0,

weights=None, ind=None)
Optimise data selection based on specified analytes.

Identifies the longest possible contiguous data region in the signal where the relative standard deviation (std)

and concentration of all analytes is minimised.

Optimisation is performed via a grid search of all possible contiguous data regions. For each region, the mean

std and mean scaled analyte concentration (‘amplitude’) are calculated.

The size and position of the optimal data region are identified using threshold std and amplitude values. Thresh-
olds are derived from all calculated stds and amplitudes using the method specified by threshold_mode. For
example, using the ‘kde_max’ method, a probability density function (PDF) is calculated for std and amplitude
values, and the threshold is set as the maximum of the PDF. These thresholds are then used to identify the size
and position of the longest contiguous region where the std is below the threshold, and the amplitude is either

below the threshold.
All possible regions of the data that have at least min_points are considered.
For a graphical demonstration of the action of signal_optimiser, use optimisation_plot.
Parameters
* d(latools.D object)— An latools data object.
* analytes (str or array-l1ike)— Which analytes to consider.
* min_points (int)— The minimum number of contiguous points to consider.

* threshold_mode (str) — The method used to calculate the optimisation thresholds.
Can be ‘mean’, ‘median’, ‘kde_max’ or ‘bayes_mvs’, or a custom function. If a function,
must take a 1D array, and return a single, real number.

* threshood_mult (float or tuple)— A multiplier applied to the calculated thresh-
old before use. If a tuple, the first value is applied to the mean threshold, and the second
is applied to the standard deviation threshold. Reduce this to make data selection more
stringent.

* x_bias (float) — If non-zero, a bias is applied to the calculated statistics to prefer the
beginning (if > 0) or end (if < 0) of the signal. Should be between zero and 1.

*» weights (array-like of length len(analytes)) — An array of numbers
specifying the importance of each analyte considered. Larger number makes the analyte
have a greater effect on the optimisation. Default is None.

* ind (boolean array)— A boolean array the same length as the data. Where false, data
will not be included.

Returns optimisation result

Return type dict

66 Chapter 2. Function Documentation

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict

latools Documentation, Release 0.3.4-submission

class latools.filtering.classifier_obj.classifier (analytes, sort_by=0)
Bases: object

fit (data, method="kmeans’, **kwargs)
fit classifiers from large dataset.

Parameters

* data (dict) — A dict of data for clustering. Must contain items with the same name as
analytes used for clustering.

* method (str)— A string defining the clustering method used. Can be:
— ’kmeans’ : K-Means clustering algorithm
— ’meanshift’ : Meanshift algorithm

* n_clusters (int)— K-Means only. The numebr of clusters to identify

* bandwidth (f1oat) — Meanshift only. The bandwidth value used during clustering. If
none, determined automatically. Note: the data are scaled before clutering, so this is not
in the same units as the data.

* bin_seeding (bool) — Meanshift only. Whether or not to use ‘bin_seeding’. See
documentation for sklearn.cluster. MeanShift.

* xxkwargs — passed to sklearn.cluster. MeanShift.
Returns
Return type list

fit_kmeans (data, n_clusters, **kwargs)
Fit KMeans clustering algorithm to data.

Parameters
* data (array-1ike)— A dataset formatted by classifier.fitting_data.
¢ n_clusters (int) - The number of clusters in the data.
* xxkwargs — passed to sklearn.cluster. KMeans.

Returns

Return type Fitted sklearn.cluster. KMeans object.

fit_meanshift (data, bandwidth=None, bin_seeding=False, **kwargs)
Fit MeanShift clustering algorithm to data.

Parameters
* data (array-1ike)— A dataset formatted by classifier.fitting_data.

* bandwidth (f1oat) - The bandwidth value used during clustering. If none, determined
automatically. Note: the data are scaled before clutering, so this is not in the same units as
the data.

* bin_seeding (bool) — Whether or not to use ‘bin_seeding’. See documentation for
sklearn.cluster. MeanShift.

* xxkwargs — passed to sklearn.cluster. MeanShift.
Returns

Return type Fitted sklearn.cluster. MeanShift object.

2.1. LAtools Documentation

67

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

latools Documentation, Release 0.3.4-submission

fitting_ data (data)
Function to format data for cluster fitting.

Parameters data (dict)— A dict of data, containing all elements of analytes as items.
Returns
Return type A data array for initial cluster fitting.

format_data (data, scale=True)
Function for converting a dict to an array suitable for sklearn.

Parameters
* data (dict)— A dict of data, containing all elements of analytes as items.

* scale (bool)— Whether or not to scale the data. Should always be True, unless used by
classifier.fitting_data where a scaler hasn’t been created yet.

Returns
Return type A data array suitable for use with sklearn.cluster.

map_clusters (size, sampled, clusters)
Translate cluster identity back to original data size.

Parameters
* size (int) - size of original dataset

* sampled (array-1ike) — integer array describing location of finite values in original
data.

* clusters (array-1ike) — integer array of cluster identities
Returns

* list of cluster identities the same length as original

* data. Where original data are non-finite, returns -2.

predict (data)
Label new data with cluster identities.

Parameters
e data (dict)— A data dict containing the same analytes used to fit the classifier.

* sort_by (str)— The name of an analyte used to sort the resulting clusters. If None,
defaults to the first analyte used in fitting.

Returns
Return type array of clusters the same length as the data.

sort_clusters (data, cs, sort_by)
Sort clusters by the concentration of a particular analyte.

Parameters
e data (dict)— A dataset containing sort_by as a key.
* cs (array-1ike)— An array of clusters, the same length as values of data.
* sort_by (str)— analyte to sort the clusters by

Returns

Return type array of clusters, sorted by mean value of sort_by analyte.

68 Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

latools Documentation, Release 0.3.4-submission

2.1.4 Configuration

Note: the entire config module is available at the top level (i.e. latools.config).

latools.helpers.config.change_default (config)
Change the default configuration.

latools.helpers.config.copy_SRM_file (destination=None, config="DEFAULT’)
Creates a copy of the default SRM table at the specified location.

Parameters

* destination (str)— The save location for the SRM file. If no location specified, saves
it as ‘LAtools_[config]_SRMTable.csv’ in the current working directory.

* config (str) — It’s possible to set up different configurations with different SRM files.
This specifies the name of the configuration that you want to copy the SRM file from. If not
specified, the ‘DEFAULT’ configuration is used.

latools.helpers.config.create (config_name, srmfile=None, dataformat=None,

base_on="DEFAULT’, make_default=False)
Adds a new configuration to latools.cfg.

Parameters

* config_name (str) — The name of the new configuration. This should be descriptive
(e.g. UC Davis Foram Group)

e srmfile (str (optional))— The location of the srm file used for calibration.
e dataformat (str (optional))— The location of the dataformat definition to use.

* base_on (str)—The name of the existing configuration to base the new one on. If either
srm_file or dataformat are not specified, the new config will copy this information from the
base_on config.

* make_default (bool)— Whether or not to make the new configuration the default for
future analyses. Default = False.

Returns
Return type None
latools.helpers.config.delete (config)

latools.helpers.config.get_dataformat_template (destination="./LAtools_dataformat_template.json’)
Copies a data format description JSON template to the specified location.

latools.helpers.config.locate ()
Prints and returns the location of the latools.cfg file.

latools.helpers.config.print_all ()
Prints all currently defined configurations.

latools.helpers.config.read configuration (config="DEFAULT’)
Read LAtools configuration file, and return parameters as dict.

latools.helpers.config.read_latoolscfg()
Reads configuration, returns a ConfigParser object.

Distinct from read_configuration, which returns a dict.

latools.helpers.config.test_dataformat (data_file, dataformat _file,

name_mode="file_names’)
Test a data formatfile against a particular data file.

2.1. LAtools Documentation 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

latools Documentation, Release 0.3.4-submission

This goes through all the steps of data import printing out the results of each step, so you can see where the

import fails.
Parameters
* data_file (str)— Path to data file, including extension.
* dataformat (dict or str)— A dataformat dict, or path to file. See example below.

* name_mode (st r) — How to identyfy sample names. If ‘file_names’ uses the input name
of the file, stripped of the extension. If ‘metadata_names’ uses the ‘name’ attribute of the
‘meta’ sub-dictionary in dataformat. If any other str, uses this str as the sample name.

Example
>>>
{'genfromtext_args': {'delimiter': ',',
'skip_header': 4}, # passed directly to np.genfromtxt
'column_id': {'name_row': 3, # which row contains the column names
'delimiter': ', "', # delimeter between column names
'timecolumn': O, # which column contains the 'time' wvariable
'pattern': ' ([A-z]1{1,2}[0-91{1,3})"}, # a regex pattern which_
—captures the column names
'meta_regex': { # a dict of (line_no: ([descriptors], [regexs])) pairs
0: (['path']l, "(.x)"),
2: (['date', 'method'], # MUST include date
'"([A-Z] [a-z]+ [0-9]+ [0-9]1{4}[1+[0-9:]+ [amp]+).* ([A-z0-9]+\.m)
=")
}
}

Returns sample, analytes, data, meta

Return type tuple

latools.helpers.config.update (config, parameter, new_value)

2.1.5 Helpers

Helper functions used by multiple parts of LAtools.

class latools.helpers.helpers.Bunch (*args, **kwds)
Bases: dict

clear () — None. Remove all items from D.
copy () — a shallow copy of D

fromkeys ()
Returns a new dict with keys from iterable and values equal to value.

get (k[,d]) — DIk]if k in D, else d. d defaults to None.
items () — a set-like object providing a view on D’s items
keys () — aset-like object providing a view on D’s keys

pop (k[, d]) — v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised

70 Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

latools Documentation, Release 0.3.4-submission

popitem () — (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.

setdefault (k[,d]) — D.get(k,d), also set D[k]=d if k not in D

update ([E] **F) — None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values () — an object providing a view on D’s values

latools.helpers.helpers.bool_2_indices (a)
Convert boolean array into a 2D array of (start, stop) pairs.

latools.helpers.helpers.calc_grads (x, dat, keys=None, win=>5)
Calculate gradients of values in dat.

Parameters
* x (array like)-Independent variable for items in dat.
* dat (dict) - {key: dependent_variable} pairs
* keys (str or array-1ike)— Which keys in dict to calculate the gradient of.
* win (int) — The side of the rolling window for gradient calculation
Returns
Return type dict of gradients

latools.helpers.helpers.collate_data (in_dir, extension=".csv’, out_dir=None)
Copy all csvs in nested directroy to single directory.

Function to copy all csvs from a directory, and place them in a new directory.
Parameters
* in dir (str) - Input directory containing csv files in subfolders
* extension (str)— The extension that identifies your data files. Defaults to ‘.csv’.
* out_dir (str)— Destination directory
Returns
Return type None

latools.helpers.helpers.enumerate_bool (bool_array, nstart=0)
Consecutively numbers contiguous booleans in array.

i.e. a boolean sequence, and resulting numbering TFTTTFTFFFTTFO0-111-2—33-
where ¢ - ¢
Parameters
* bool_array (array_like)— Array of booleans.
* nstart (int)— The number of the first boolean group.

latools.helpers.helpers.fastgrad (a, win=11)
Returns rolling - window gradient of a.

Function to efficiently calculate the rolling gradient of a numpy array using ‘stride_tricks’ to split up a 1D array
into an ndarray of sub - sections of the original array, of dimensions [len(a) - win, win].

Parameters

2.1. LAtools Documentation 71

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

latools Documentation, Release 0.3.4-submission

* a(array_like)—The 1D array to calculate the rolling gradient of.
* win (int)— The width of the rolling window.

Returns Gradient of a, assuming as constant integer x - scale.

Return type array_like

latools.helpers.helpers.fastsmooth (a, win=11)
Returns rolling - window smooth of a.

Function to efficiently calculate the rolling mean of a numpy array using ‘stride_tricks’ to split up a 1D array
into an ndarray of sub - sections of the original array, of dimensions [len(a) - win, win].

Parameters
* a(array_like)—The 1D array to calculate the rolling gradient of.
* win (int)— The width of the rolling window.

Returns Gradient of a, assuming as constant integer x - scale.

Return type array_like

latools.helpers.helpers.findmins (x,y)
Function to find local minima.

Parameters y (x,) — 1D arrays of the independent (x) and dependent (y) variables.
Returns Array of points in x where y has a local minimum.
Return type array_like

latools.helpers.helpers.get_date (datetime, time_format=None)
Return a datetime oject from a string, with optional time format.

Parameters
* datetime (str) - Date-time as string in any sensible format.

* time_ format (datetime str (optional)) — String describing the datetime for-
mat. If missing uses dateutil.parser to guess time format.

latools.helpers.helpers.get_example_data (destination_dir)

latools.helpers.helpers.get_total_n_points (d)
Returns the total number of data points in values of dict.

d : dict

latools.helpers.helpers.get_total_time_span (d)
Returns total length of analysis.

latools.helpers.helpers.pretty element (s)
Returns formatted element name.

Parameters s (str)— of format [A-Z][a-z]?[0-9]+

Returns LaTeX formatted string with superscript numbers.

Return type str
latools.helpers.helpers.rangecalc (xs, pad=0.05)

latools.helpers.helpers.rolling_window (a, window, pad=None)
Returns (win, len(a)) rolling - window array of data.

Parameters

72 Chapter 2. Function Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

latools Documentation, Release 0.3.4-submission

* a(array_like)— Array to calculate the rolling window of
* window (int)— Description of window.
* pad (same as dtype (a)) - Description of pad.

Returns An array of shape (n, window), where n is either len(a) - window if pad is None, or len(a)
if pad is not None.

Return type array_like

latools.helpers.helpers.stack_keys (ddict, keys, extra=None)
Combine elements of ddict into an array of shape (len(ddict[key]), len(keys)).

Useful for preparing data for sklearn.
Parameters
* ddict (dict)— A dict containing arrays or lists to be stacked. Must be of equal length.
* keys (1ist or str)-The keys of dict to stack. Must be present in ddict.

* extra (list (optional)) — A list of additional arrays to stack. Elements of extra
must be the same length as arrays in ddict. Extras are inserted as the first columns of output.

latools.helpers.helpers.tuples_2_bool (tuples, x)
Generate boolean array from list of limit tuples.

Parameters
* tuples (array_1like)—-[2, n] array of (start, end) values
* x (array_like)—x scale the tuples are mapped to
Returns boolean array, True where x is between each pair of tuples.
Return type array_like

class latools.helpers.helpers.un_interpld (x,y, **kwargs)
Bases: object

object for handling interpolation of values with uncertainties.
new (xn)

new_nom (xn)

new_std (xn)

latools.helpers.helpers.unitpicker (a, llim=0.1, denominator=None, focus_stage=None)
Determines the most appropriate plotting unit for data.

Parameters

* a(float or array-like)— number to optimise. If array like, the 25% quantile is
optimised.

e 11lim (fIloat)— minimum allowable value in scaled data.
Returns (multiplier, unit)
Return type (float, str)

latools.helpers.chemistry.calec_M (molecule)
Returns molecular weight of molecule.

Where molecule is in standard chemical notation, e.g. ‘C0O2’, ‘HCO3’ or B(OH)4

Returns molecular_weight

2.1. LAtools Documentation 73

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

latools Documentation, Release 0.3.4-submission

Return type float

latools.helpers.chemistry.elements (all_isotopes=True)
Loads a DataFrame of all elements and isotopes.

Scraped from https://www.webelements.com/
Returns

Return type pandas DataFrame with columns (element, atomic_number, isotope, atomic_weight,
percent)

latools.helpers.chemistry.to_mass_fraction (molar_ratio, massfrac_denominator, numera-

tor_mass, denominator_mass)
Converts per-mass concentrations to molar elemental ratios.

Be careful with units.

Parameters
* molar_ratio (float or array-like)- The molar ratio of elements.

* massfrac_denominator (float or array-1ike)-The mass fraction of the de-
nominator element

¢ denominator_mass (numerator_mass,) — The atomic mass of the numerator and
denominator.

Returns float or array-like

Return type The mass fraction of the numerator element.

latools.helpers.chemistry.to_molar_ratio (massfrac_numerator, massfrac_denominator, nu-

merator_mass, denominator_mass)

Converts per-mass concentrations to molar elemental ratios.

Be careful with units.
Parameters

¢ denominator_mass (numerator_mass,) — The atomic mass of the numerator and
denominator.

* massfrac_denominator (massfrac_numerator,)— The per-mass fraction of the
numnerator and denominator.

Returns float or array-like

Return type The molar ratio of elements in the material

latools.helpers.process_fns.autorange (f, sig, gwin=7, swin=None, win=30, on_mult=(1.5,

1.0), off_mult=(1.0, 1.5), nbin=10, thresh=None)
Automatically separates signal and background in an on/off data stream.

Step 1: Thresholding. The background signal is determined using a gaussian kernel density estimator (kde) of
all the data. Under normal circumstances, this kde should find two distinct data distributions, corresponding to
‘signal’ and ‘background’. The minima between these two distributions is taken as a rough threshold to identify
signal and background regions. Any point where the trace crosses this thrshold is identified as a ‘transition’.

Step 2: Transition Removal. The width of the transition regions between signal and background are then
determined, and the transitions are excluded from analysis. The width of the transitions is determined by fitting
a gaussian to the smoothed first derivative of the analyte trace, and determining its width at a point where the
gaussian intensity is at at conf time the gaussian maximum. These gaussians are fit to subsets of the data
centered around the transitions regions determined in Step 1, +/- win data points. The peak is further isolated by
finding the minima and maxima of a second derivative within this window, and the gaussian is fit to the isolated
peak.

74

Chapter 2. Function Documentation

https://docs.python.org/3/library/functions.html#float
https://www.webelements.com/
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

latools Documentation, Release 0.3.4-submission

Parameters
* t (array-1ike) - Independent variable (usually time).
* sig(array-1ike)— Dependent signal, with distinctive ‘on’ and ‘off” regions.
* gwin (int)— The window used for calculating first derivative. Defaults to 7.
* swin (int)— The window ised for signal smoothing. If None, gwin // 2.
* win (int)— The width (c +/- win) of the transition data subsets. Defaults to 20.

* and off_mult (on_mult)- Control the width of the excluded transition regions, which
is defined relative to the peak full-width-half-maximum (FWHM) of the transition gradient.
The region n * FHWM below the transition, and m * FWHM above the tranision will be
excluded, where (n, m) are specified in on_mult and off_mult. on_mult and off_mult apply
to the off-on and on-off transitions, respectively. Defaults to (1.5, 1) and (1, 1.5).

* nbin (ind) — Used to calculate the number of bins in the data histogram. bins =
len(sig) // nbin

Returns fbkg, fsig, ftrn, failed — where fbkg, fsig and ftrn are boolean arrays the same length as
sig, that are True where sig is background, signal and transition, respecively. failed contains a
list of transition positions where gaussian fitting has failed.

Return type tuple

latools.helpers.process_fns.expdecay_despike (sig, expdecay_coef, tstep, maxiter=3)
Apply exponential decay filter to remove physically impossible data based on instrumental washout.

The filter is re-applied until no more points are removed, or maxiter is reached.
Parameters
* exponent (f1oat)— Exponent used in filter
* tstep (f1oat)— The time increment between data points.
* maxiter (int)— The maximum number of times the filter should be applied.
Returns
Return type None

latools.helpers.process_fns.noise_despike (sig, win=3, nlim=24.0, maxiter=4)
Apply standard deviation filter to remove anomalous values.

Parameters
* win (int)— The window used to calculate rolling statistics.

* nlim (f1oat)— The number of standard deviations above the rolling mean above which
data are considered outliers.

Returns
Return type None

latools.helpers.process_£fns.read data (data_file, dataformat, name_mode)
Load data_file described by a dataformat dict.

Parameters
* data_file (str) - Path to data file, including extension.

* dataformat (dict)— A dataformat dict, see example below.

2.1. LAtools Documentation 75

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

latools Documentation, Release 0.3.4-submission

* name_mode (st r)— How to identyfy sample names. If ‘file_names’ uses the input name
of the file, stripped of the extension. If ‘metadata_names’ uses the ‘name’ attribute of the
‘meta’ sub-dictionary in dataformat. If any other str, uses this str as the sample name.

Example
>>>
{'genfromtext_args': {'delimiter': ',"',
'skip_header': 4}, # passed directly to np.genfromtxt
'column_id': {'name_row': 3, # which row contains the column names
'delimiter': ',', # delimeter between column names
'timecolumn': 0, # which column contains the 'time' variable
'pattern': ' ([A-z]{1,2}[0-91{1,3})'"}, # a regex pattern which,
—captures the column names
'meta_regex': { # a dict of (line_no: ([descriptors], [regexs])) pairs
O: (['path'], '"(.x)"),
2: (['date', 'method'], # MUST include date
"([A-Z][a-z]+ [0-9]+ [0-9]1{4}[1+4[0-9:]1+ [amp]+).x ([A-z0-9]+\.m)
")
}
}

Returns sample, analytes, data, meta
Return type tuple
latools.helpers.stat_fns.H15_mean (x)
Calculate the Huber (H15) Robust mean of x.

For details, see: http://www.cscjp.co.jp/fera/document/ANALYSTVoll 14Decpgs1693-97_1989.pdf
http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf

latools.helpers.stat_fns.H15_se (x)
Calculate the Huber (H15) Robust standard deviation of x.

For details, see: http://www.cscjp.co.jp/fera/document/ANALYSTVoll 14Decpgs1693-97_1989.pdf
http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf

latools.helpers.stat_fns.H15_std (x)
Calculate the Huber (H15) Robust standard deviation of x.

For details, see: http://www.cscjp.co.jp/fera/document/ANALYSTVoll 14Decpgs1693-97_1989.pdf
http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf

latools.helpers.stat_fns.R2calc (meas, model, force_zero=False)

latools.helpers.stat_fns.gauss (x, *p)
Gaussian function.

Parameters
* x (array_like)—Independent variable.

* xp (parameters unpacked to A, mu, sigma) - A = amplitude, mu = centre,
sigma = width

Returns gaussian descriped by *p.

Return type array_like

76 Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
http://www.cscjp.co.jp/fera/document/ANALYSTVol114Decpgs1693-97_1989.pdf
http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf
http://www.cscjp.co.jp/fera/document/ANALYSTVol114Decpgs1693-97_1989.pdf
http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf
http://www.cscjp.co.jp/fera/document/ANALYSTVol114Decpgs1693-97_1989.pdf
http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf

latools Documentation, Release 0.3.4-submission

latools.helpers.stat_fns.gauss_weighted_stats (x, yarray, x_new, fwhm)
Calculate gaussian weigted moving mean, SD and SE.

Parameters
* x (array-1ike)— The independent variable

* yarray ((n,m) array)-— Wheren =x.size, and m is the number of dependent variables
to smooth.

* x_new (array-1like)— The new x-scale to interpolate the data
* fwhm (int)— FWHM of the gaussian kernel.
Returns (mean, std, se)
Return type tuple
latools.helpers.stat_fns.nominal_values (a)
latools.helpers.stat_fns.std_devs (a)

latools.helpers.stat_fns.stderr (a)
Calculate the standard error of a.

latools.helpers.stat_fns.unpack_uncertainties (uarray)
Convenience function to unpack nominal values and uncertainties from an uncertainties.uarray.

Returns (nominal_values, std_devs)

latools.helpers.plot.autorange_plot (1, sig, gwin=7, swin=None, win=30, on_mult=(1.5, 1.0),
off_mult=(1.0, 1.5), nbin=10, thresh=None)
Function for visualising the autorange mechanism.

Parameters
* t (array-1ike)—Independent variable (usually time).
* sig(array-1like)— Dependent signal, with distinctive ‘on’ and ‘off” regions.
* gwin (int)— The window used for calculating first derivative. Defaults to 7.
* swin (int)— The window ised for signal smoothing. If None, gwin // 2.
* win (int)— The width (c +/- win) of the transition data subsets. Defaults to 20.

* and off_mult (on_mult)- Control the width of the excluded transition regions, which
is defined relative to the peak full-width-half-maximum (FWHM) of the transition gradient.
The region n * FHWM below the transition, and m * FWHM above the tranision will be
excluded, where (n, m) are specified in on_mult and off_mult. on_mult and off_mult apply
to the off-on and on-off transitions, respectively. Defaults to (1.5, 1) and (1, 1.5).

* nbin (ind) - Used to calculate the number of bins in the data histogram. bins = len(sig) //
nbin

Returns
Return type fig, axes

latools.helpers.plot.calibration_plot (self, analytes=None, datarange=True, loglog=False,

]]) save=True)
Plot the calibration lines between measured and known SRM values.

Parameters

* analytes (optional, array_like or str)-— The analyte(s) to plot. Defaults to
all analytes.

2.1. LAtools Documentation 77

https://docs.python.org/3/library/array.html#module-array
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

latools Documentation, Release 0.3.4-submission

* datarange (boolean)— Whether or not to show the distribution of the measured data
alongside the calibration curve.

* loglog (boolean) — Whether or not to plot the data on a log - log scale. This is useful
if you have two low standards very close together, and want to check whether your data are
between them, or below them.

Returns
Return type (fig, axes)

latools.helpers.plot.crossplot (dat, keys=None, lognorm=True, bins=25, figsize=(12, 12),
colourful=True, focus_stage=None, denominator=None,

mode="hist2d’, cmap=None, **kwargs)
Plot analytes against each other.

The number of plots is n**2 - n, where n = len(keys).
Parameters

* keys (optional, array_like or str)— The analyte(s) to plot. Defaults to all
analytes.

* lognorm (bool)— Whether or not to log normalise the colour scale of the 2D histogram.
* bins (int)— The number of bins in the 2D histogram.

Returns

Return type (fig, axes)

latools.helpers.plot.filter_report (Data, filt=None, analytes=None, savedir=None, nbin=>5)
Visualise effect of data filters.

Parameters

* filt (str) — Exact or partial name of filter to plot. Supports partial matching. i.e. if
‘cluster’ is specified, all filters with ‘cluster’ in the name will be plotted. Defaults to all
filters.

* analyte (str)— Name of analyte to plot.
* save (str)—file path to save the plot
Returns
Return type (fig, axes)

latools.helpers.plot.histograms (dat, keys=None, bins=25, logy=False, cmap=None)
Plot histograms of all items in dat.

Parameters
* dat (dict)—Datain {key: array} pairs.
* keys (arra-1ike)— The keys in dat that you want to plot. If None, all are plotted.
* bins (int) - The number of bins in each histogram (default = 25)
* logy (bool) —If true, y axis is a log scale.
* cmap (dict)— The colours that the different items should be. If None, all are grey.
Returns

Return type fig, axes

78 Chapter 2. Function Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

latools Documentation, Release 0.3.4-submission

latools.helpers.plot.tplot (self, analytes=None, figsize=[10, 4], scale=’log’, filt=None,

ranges=False, stats=False, stat="nanmean’, err=’nanstd’, inter-
active=False, focus_stage=None, err_envelope=False, ax=None)

Plot analytes as a function of Time.

Parameters

Returns

analytes (array_1like) — list of strings containing names of analytes to plot. None =
all analytes.

figsize (tuple) - size of final figure.
scale (str or None)- ‘log’ = plot data on log scale

£ilt (bool, str or dict)- False: plot unfiltered data. True: plot filtered data over
unfiltered data. str: apply filter key to all analytes dict: apply key to each analyte in dict.
Must contain all analytes plotted. Can use self filt.keydict.

ranges (bool) — show signal/background regions.

stats (bool) — plot average and error of each trace, as specified by stat and err.
stat (str) — average statistic to plot.

err (str)— error statistic to plot.

interactive (bool)— Make the plot interactive.

Return type figure, axis

2.1. LAtools Documentation

79

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

latools Documentation, Release 0.3.4-submission

80

Chapter 2. Function Documentation

CHAPTER 3

Indices and tables

* genindex

¢ search

81

latools Documentation, Release 0.3.4-submission

82

Chapter 3. Indices and tables

Python Module Index

latools.
latools.
latools.
latools.
latools.
latools.
latools.
latools.
latools.
latools.

D_ob7j, 53
filtering.classifier_obi, 66
filtering.signal_optimiser, 65
helpers.chemistry, 73
helpers.config, 69
helpers.helpers, 70
helpers.plot, 77
helpers.process_fns, 74
helpers.stat_fns, 76
latools, 35

83

latools Documentation, Release 0.3.4-submission

84

Python Module Index

Index

A

ablation_times() (latools.D_obj.D method), 54
ablation_times() (latools.latools.analyse method), 36
add() (latools.filtering.filt_obj.filt method), 63
analyse (class in latools.latools), 35

analytes (latools.D_obj.D attribute), 54

analytes (latools.filtering.filt_obj.filt attribute), 62
analytes (latools.latools.analyse attribute), 36

analyze (in module latools.latools), 53
apply_classifier() (latools.latools.analyse method), 36
autorange() (in module latools.helpers.process_fns), 74
autorange() (latools.D_obj.D method), 55
autorange() (latools.latools.analyse method), 36
autorange_plot() (in module latools.helpers.plot), 77
autorange_plot() (latools.D_obj.D method), 55

B

basic_processing() (latools.latools.analyse method), 37
bayes_scale() (in module la-
tools.filtering.signal_optimiser), 65
bkg_calc_interpld() (latools.latools.analyse method), 37
bkg_calc_weightedmean() (latools.latools.analyse
method), 38
bkg_plot() (latools.latools.analyse method), 38
bkg_subtract() (latools.D_obj.D method), 55
bkg_subtract() (latools.latools.analyse method), 39
bool_2_indices() (in module latools.helpers.helpers), 71
Bunch (class in latools.helpers.helpers), 70

C

calc_grads() (in module latools.helpers.helpers), 71
calc_M() (in module latools.helpers.chemistry), 73

calc_window_mean_std() (in module la-
tools.filtering.signal_optimiser), 65

calc_windows() (in module la-
tools.filtering.signal_optimiser), 65

calculate_optimisation_stats() (in module la-

tools.filtering.signal_optimiser), 65
calibrate() (latools.D_obj.D method), 55

calibrate() (latools.latools.analyse method), 39
calibration_plot() (in module latools.helpers.plot), 77
calibration_plot() (latools.latools.analyse method), 39
change_default() (in module latools.helpers.config), 69
classifier (class in latools.filtering.classifier_obj), 66
clean() (latools.filtering.filt_obj.filt method), 63
clear() (latools.filtering.filt_obj.filt method), 63

clear() (latools.helpers.helpers.Bunch method), 70
clear_calibration() (latools.latools.analyse method), 39
cmap (latools.D_obj.D attribute), 54

cmaps (latools.latools.analyse attribute), 36
collate_data() (in module latools.helpers.helpers), 71
components (latools.filtering.filt_obj.filt attribute), 63
copy() (latools.helpers.helpers.Bunch method), 70
copy_SRM._file() (in module latools.helpers.config), 69
create() (in module latools.helpers.config), 69
crossplot() (in module latools.helpers.plot), 78
crossplot() (latools.D_obj.D method), 56

crossplot() (latools.latools.analyse method), 39
crossplot_filters() (latools.D_obj.D method), 56
crossplot_filters() (latools.latools.analyse method), 40

D

D (class in latools.D_obj), 53

data (latools.D_obj.D attribute), 54

data (latools.latools.analyse attribute), 36
delete() (in module latools.helpers.config), 69
despike() (latools.D_obj.D method), 56
despike() (latools.latools.analyse method), 40
dirname (latools.latools.analyse attribute), 36

E

elements() (in module latools.helpers.chemistry), 74

enumerate_bool() (in module latools.helpers.helpers), 71

expdecay_despike() (in module la-
tools.helpers.process_fns), 75

export_traces() (latools.latools.analyse method), 40

F

fastgrad() (in module latools.helpers.helpers), 71

85

latools Documentation, Release 0.3.4-submission

fastsmooth() (in module latools.helpers.helpers), 72

files (latools.latools.analyse attribute), 36

filt (class in latools.filtering.filt_obj), 62

filt (latools.D_obj.D attribute), 54

filt_nremoved() (latools.D_obj.D method), 56

filter_clear() (latools.latools.analyse method), 41

filter_clustering() (latools.D_obj.D method), 56

filter_clustering() (latools.latools.analyse method), 41

filter_correlation() (latools.D_obj.D method), 58

filter_correlation() (latools.latools.analyse method), 42

filter_defragment() (latools.latools.analyse method), 43

filter_effect() (latools.latools.analyse method), 43

filter_exclude_downhole() (latools.D_obj.D method), 58

filter_exclude_downhole() (latools.latools.analyse
method), 43

filter_gradient_threshold() (latools.D_obj.D method), 58

filter_gradient_threshold() (latools.latools.analyse
method), 43

filter_gradient_threshold_percentile()
tools.latools.analyse method), 44

filter_new() (latools.D_obj.D method), 59

filter_nremoved() (latools.latools.analyse method), 44

filter_off() (latools.latools.analyse method), 44

filter_on() (latools.latools.analyse method), 44

filter_report() (in module latools.helpers.plot), 78

filter_report() (latools.D_obj.D method), 59

filter_reports() (latools.latools.analyse method), 45

filter_status() (latools.latools.analyse method), 45

filter_threshold() (latools.D_obj.D method), 59

filter_threshold() (latools.latools.analyse method), 45

filter_threshold_percentile() (latools.latools.analyse
method), 45

filter_trim() (latools.D_obj.D method), 59

filter_trim() (latools.latools.analyse method), 46

find_expcoef() (latools.latools.analyse method), 46

findmins() (in module latools.helpers.helpers), 72

fit() (latools.filtering.classifier_obj.classifier method), 67

fit_classifier() (latools.latools.analyse method), 46

fit_kmeans() (latools.filtering.classifier_obj.classifier
method), 67

fit_meanshift() (latools.filtering.classifier_obj.classifier
method), 67

fitting_data() (latools.filtering.classifier_obj.classifier
method), 67

focus (latools.D_obj.D attribute), 54

focus_stage (latools.D_obj.D attribute), 54

folder (latools.latools.analyse attribute), 36

format_data() (latools.filtering.classifier_obj.classifier
method), 68

fromkeys() (latools.helpers.helpers.Bunch method), 70

fuzzmatch() (latools.filtering.filt_obj.filt method), 63

G

gauss() (in module latools.helpers.stat_fns), 76

(la-

gauss_weighted_stats() (in module la-
tools.helpers.stat_fns), 76

get() (latools.helpers.helpers.Bunch method), 70

get_background() (latools.latools.analyse method), 47

get_components() (latools.filtering.filt_obj.filt method),
63

get_dataformat_template() (in
tools.helpers.config), 69

get_date() (in module latools.helpers.helpers), 72

get_example_data() (in module latools.helpers.helpers),
72

get_focus() (latools.latools.analyse method), 47

get_gradients() (latools.latools.analyse method), 48

get_info() (latools.filtering.filt_obj.filt method), 64

get_params() (latools.D_obj.D method), 60

get_total_n_points() (in module latools.helpers.helpers),
72

get_total_time_span() (in module latools.helpers.helpers),
72

getstats() (latools.latools.analyse method), 48

gplot() (latools.D_obj.D method), 60

grab_filt() (latools.filtering.filt_obj.filt method), 64

gradient_crossplot() (latools.latools.analyse method), 48

gradient_histogram() (latools.latools.analyse method), 48

gradient_plots() (latools.latools.analyse method), 49

H

H15_mean() (in module latools.helpers.stat_fns), 76
H15_se() (in module latools.helpers.stat_fns), 76
H15_std() (in module latools.helpers.stat_fns), 76
histograms() (in module latools.helpers.plot), 78
histograms() (latools.latools.analyse method), 49

info (latools.filtering.filt_obj.filt attribute), 63
items() (latools.helpers.helpers.Bunch method), 70

K

keys (latools.filtering.filt_obj.filt attribute), 63
keys() (latools.helpers.helpers.Bunch method), 70

L

latools.D_obj (module), 53
latools.filtering.classifier_obj (module), 66
latools.filtering.signal_optimiser (module), 65
latools.helpers.chemistry (module), 73
latools.helpers.config (module), 69
latools.helpers.helpers (module), 70
latools.helpers.plot (module), 77
latools.helpers.process_fns (module), 74
latools.helpers.stat_fns (module), 76
latools.latools (module), 35

locate() (in module latools.helpers.config), 69

module la-

86

Index

latools Documentation, Release 0.3.4-submission

M

make() (latools.filtering.filt_obj.filt method), 64

make_fromkey() (latools.filtering.filt_obj.filt method), 64

make_keydict() (latools.filtering.filt_obj.filt method), 64

make_subset() (latools.latools.analyse method), 50

map_clusters() (latools.filtering.classifier_obj.classifier
method), 68

median_scaler() (in module la-
tools.filtering.signal_optimiser), 65

meta (latools.D_obj.D attribute), 54

minimal_export() (latools.latools.analyse method), 50

mkrngs() (latools.D_obj.D method), 60

N

n (latools.filtering.filt_obj.filt attribute), 63

new() (latools.helpers.helpers.un_interpld method), 73

new_nom() (latools.helpers.helpers.un_interp1d method),
73

new_std() (latools.helpers.helpers.un_interpld method),
73

noise_despike() (in module latools.helpers.process_fns),
75

nominal_values() (in module latools.helpers.stat_fns), 77

ns (latools.D_obj.D attribute), 54

O

off() (latools.filtering.filt_obj.filt method), 64

on() (latools.filtering.filt_obj.filt method), 65

optimisation_plot() (in module la-
tools.filtering.signal_optimiser), 65

optimisation_plot() (latools.D_obj.D method), 60

optimisation_plots() (latools.latools.analyse method), 50

optimise_signal() (latools.latools.analyse method), 50

P

param_dir (latools.latools.analyse attribute), 36

params (latools.filtering.filt_obj.filt attribute), 63

pop() (latools.helpers.helpers.Bunch method), 70

popitem() (latools.helpers.helpers.Bunch method), 70

predict() (latools.filtering.classifier_obj.classifier
method), 68

pretty_element() (in module latools.helpers.helpers), 72

print_all() (in module latools.helpers.config), 69

R

R2calc() (in module latools.helpers.stat_fns), 76

rangecalc() (in module latools.helpers.helpers), 72

ratio() (latools.D_obj.D method), 60

ratio() (latools.latools.analyse method), 51

read_configuration() (in module latools.helpers.config),
69

read_data() (in module latools.helpers.process_fns), 75

read_latoolscfg() (in module latools.helpers.config), 69

remove() (latools.filtering.filt_obj.filt method), 65
report_dir (latools.latools.analyse attribute), 36
reproduce() (in module latools.latools), 53
rolling_window() (in module latools.helpers.helpers), 72

S

sample (latools.D_obj.D attribute), 54

sample_stats() (latools.D_obj.D method), 60

sample_stats() (latools.latools.analyse method), 51

samples (latools.latools.analyse attribute), 36

scale() (in module latools.filtering.signal_optimiser), 66

scaler() (in module latools.filtering.signal_optimiser), 66

sequence (latools.filtering.filt_obj.filt attribute), 63

set_focus() (latools.latools.analyse method), 51

setdefault() (latools.helpers.helpers.Bunch method), 71

setfocus() (latools.D_obj.D method), 61

signal_optimiser() (in module la-
tools.filtering.signal_optimiser), 66

signal_optimiser() (latools.D_obj.D method), 61

size (latools.filtering.filt_obj.filt attribute), 62

sort_clusters() (latools.filtering.classifier_obj.classifier
method), 68

srm_id_auto() (latools.latools.analyse method), 52

srm_identifier (latools.latools.analyse attribute), 36

stack_keys() (in module latools.helpers.helpers), 73

statplot() (latools.latools.analyse method), 52

std_devs() (in module latools.helpers.stat_fns), 77

stderr() (in module latools.helpers.stat_fns), 77

stds (latools.latools.analyse attribute), 36

switches (latools.filtering.filt_obj.filt attribute), 63

T

test_dataformat() (in module latools.helpers.config), 69

to_mass_fraction() (in module latools.helpers.chemistry),
74

to_molar_ratio() (in module latools.helpers.chemistry),
74

tplot() (in module latools.helpers.plot), 78

tplot() (latools.D_obj.D method), 62

trace_plots() (latools.latools.analyse method), 52

tuples_2_bool() (in module latools.helpers.helpers), 73

U

un_interpld (class in latools.helpers.helpers), 73

unitpicker() (in module latools.helpers.helpers), 73

unpack_uncertainties() (in module
tools.helpers.stat_fns), 77

update() (in module latools.helpers.config), 70

update() (latools.helpers.helpers.Bunch method), 71

Vv

values() (latools.helpers.helpers.Bunch method), 71

la-

Index

87

latools Documentation, Release 0.3.4-submission

Z

zeroscreen() (latools.latools.analyse method), 53

88 Index

	Overview
	User Guide
	Start Here!
	Introduction
	Why Use latools?
	Very Important Warning
	Overview: Understand latools
	Where next?

	Installation
	Prerequisite: Python
	Installing latools
	Next Steps

	Beginner’s Guide
	Getting Started
	Importing Data
	Plotting
	Data De-spiking
	Background Correction
	Ratio Calculation
	Calibration
	Data Selection and Filtering
	Sample Statistics
	Reproducibility
	Summary
	FAQs
	Example Analyses

	Configuration Guide
	Three Steps to Configuration
	Data Formats
	The SRM File
	Managing Configurations

	Function Documentation
	LAtools Documentation
	latools.analyse object
	latools.D object
	Filtering
	Configuration
	Helpers

	Indices and tables
	Python Module Index

