latools Documentation
Release 0.3.11

Oscar Branson

Jul 04, 2019

Contents

1 Overview

1.1

3

UserGuide o e 3
1.1.1 StartHere! e 3
1.1.2 Introduction o L e e e e e e e e e e e e 3
1.1.2.1 Why Use latools? e 3

1.1.2.2 Very Important Warning i v v it e e e e e 4

1.1.2.3 Overview: Understand latools oo v i i v v it 4
1.1.2.4 Wherenext? e e e 5

1.1.3 Installation L o e e e e e e e e e e 5
1.1.3.1 Prerequisite: Python 5
1.1.3.2 Installing 1atools o oo ittt e e e 6
1.1.33 0 NextSteps . . . v v v v e i e e e e e e e e e e e e e e e e e 6

[.1.4 Beginner’'sGuide e 6
1.14.1 Getting Started 6
1.142 TImportingData. L 8

1.1.43 Plotting o e e e e e e 9
1.1.44 DataDe-spiking e e e e e 10

1.1.4.5 Background Correction v it e e e e 10

1.14.6 RatioCalculation 13

1.1.477 Calibration e e e e e e e e e 13

1.1.4.8 Data Selection and Filtering 14

1.1.49 Sample StatistiCS v v v v e e e e e e e e e e e e 21
1.1.4.10 Reproducibility e e e 21
L1411 Summaryo o e e e 22
1.1.4.12 FAQS . . . o o o e 23

1.1.5 Example Analyses e e 24
1.1.6 Filters e e 24
1.1.6.1 Thresholds e 24

1.1.6.2 Percentile Thresholds, 27

1.1.6.3 Correlation e e e e e e e 28

1.1.64 Clustering e e 31

1.1.6.5 Signal Optimisation o vttt e e e 34
1.1.6.6 Defragmentation 0 i e e e e e 37

1.1.6.7 Down-Hole Exclusion 39

1.1.6.8 Trimming/Expansion 40

117 Preprocessingo e e e 40

2.1

1.1.7.1 LongFile Splitting e e e e e e
1.1.8 Configuration Guide e e e e e e
1.1.8.1 Three Steps to Configuration
1.1.8.2 DataFormats
1.1.83 TheSRMFile e
1.1.8.4 Managing Configurations v it e e
2 Function Documentation
LAtools Documentation e e e e
2.1.1 latools.analyse object e e e
2.1.2 Jatools.Dobject e e e e e e e e e
2.1.3 Filtering e e e e e e
2.1.4 Configuration e e e e e
2.1.5 Preprocessing i i i i e e e e e e e e e e e e e
2.1.6 Helpers e e

3 Indices and tables

Python Module Index

Index

55
55
55
76
86
93
95
96

107

109

111

latools Documentation, Release 0.3.11

LAtools: a Python toolbox for processing Laser Ablations Mass Spectrometry (LA-MS) data.

Contents 1

latools Documentation, Release 0.3.11

2 Contents

CHAPTER 1

Overview

1.1 User Guide

1.1.1 Start Here!

If you’re completely new to LAtools (and Python!?), these are the steps you need to follow to get going.
1. Install Python and LAtools.
2. Go through the Begginners Guide example data analysis.
3. Configure LAtools for your system.

And you’re done!

If you run into problems with the software or documentation, please let us know.

1.1.2 Introduction

Laser Ablation Tools (1atools) is a Python toolbox for processing Laser Ablations Mass Spectrometry (LA-MS)
data.

1.1.2.1 Why Use latools?

At present, most LA-MS data requires a degree of manual processing. This introduces subjectivity in data analysis,
and independent expert analysts can obtain significantly different results from the same raw data. At present, there is
no standard way of reporting LA-MS data analysis, which would allow an independent user to obtain the same results
from the same raw data. latools is designed to tackle this problem.

latools automatically handles all the routine aspects of LA-MS data reduction:
1. Signal De-spiking
2. Signal / Background Identification

https://groups.google.com/forum/#!forum/latools

latools Documentation, Release 0.3.11

3. Background Subtraction
4. Normalisation to internal standard
5. Calibration to SRMs

These processing steps perform the same basic functions as other LA-MS processing software. If your end goal is
calibrated ablation profiles, these can be exported at this stage for external plotting an analysis. The real strength of
latools comes in the systematic identification and removal of contaminant signals, and calculation of integrated
values for ablation spots. This is accomplished with two significant new features.

6. Systematic data selection using quantitative data selection filfers.
7. Analyses can be fully reproduced by independent users through the export and import of analytical sessions.

These features provide the user with systematic tools to reduce laser ablation profiles to per-ablation integrated av-
erages. At the end of processing, latools can export a set of parameters describing your analysis, along with a
minimal dataset containing the SRM table and all raw data required to reproduce your analysis (i.e. only analytes
explicitly used during processing).

1.1.2.2 Very Important Warning

If used correctly, 1atools will allow the high-throughput, semi-automated processing of LA-MS data in a system-
atic, reproducible manner. Because it is semi-automated, it is very easy to treat it as a ‘black box’. You must not
do this. The data you get at the end will only be valid if processed appropriately. Because latools brings repro-
ducibility to LA-MS processing, it will be very easy for peers to examine your data processing methods, and identify
any shortfalls. In essence: to appropriately use 1atools, you must understand how it works!

The best way to understand how it works will be to play around with data processing, but before you do that there are
a few things you can do to start you off in the right direction:

1. Read and understand the following ‘Overview’ section. This will give you a basic understanding of the archi-
tecture of latools, and how its various components relate to each other.

2. Work through the ‘Getting Started’ guide. This takes you step-by-step through the analysis of an example
dataset.

3. Be aware of the extensive documentation that describes the action of each function within latools, and tells
you what each of the input parameters does.

1.1.2.3 Overview: Understand latools

latools is a Python ‘module’. You do not need to be fluent in Python to understand 1atools, as understanding
what each processing step does to your data is more important than how it is done. That said, an understanding of
Python won’t hurt!

Architecture

The 1atools module contains two core ‘objects’ that interact to process LA-MS data:

* latools.D is the most ‘basic’ object, and is a ‘container’ for the data imported from a single LA-MS data
file.

* latools.analyse is a higher-level object, containing numerous latools.D objects. This is the object
you will interact with most when processing data, and it contains all the functions you need to perform your
analysis.

4 Chapter 1. Overview

latools Documentation, Release 0.3.11

This structure reflects the hierarchical nature of LA-MS analysis. Each ablation contains an measurements of a single
sample (i.e. the ‘D’ object), but data reduction requires consideration of multiple ablations of samples and standards
collected over an analytical session (i.e. the ‘analyse’ object). In line with this, some data processing steps (de-spiking,
signal/background identification, normalisation to internal standard) can happen at the individual analysis level (i.e.
within the 1atools.D object), while others (background subtraction, calibration, filtering) require a more holistic
approach that considers the entire analytical session (i.e. at the latools.analyse level).

How it works

In practice, you will do all data processing using the 1atools.analyse object, which contains all the data process-
ing functionality you’ll need. To start processing data, you create an latools.analyse object and tell it which
folder your data are stored in. latools.analyse then imports all the files in the data folder as 1atools.D ob-
jects, and labels them by their file names. The 1atools.analyse object contains all of the 1atools.D objects
withing a ‘dictionary’ called latools.analyse.data_dict, where the each individual 1atools.D object can
be accessed via its name. Data processing therefore works best when ablations of each individual sample or standard
are stored in a single data folder, named according to what was measured.

Todo: In the near future, latools will also be able to cope with multiple ablations stored in a single, long data file,
as long as a list of sample names is provided to identify each ablation.

When you’re performing a processing step that can happen at an individual-sample level (e.g. de-spiking), the
latools.analyse object passes the task directly on to the 1atools.D objects, whereas when you’re performing
a step that requires consideration of the entire analytical session (e.g. calibration), the 1latools.analyse ob-
ject will coordinate the interaction of the different Latools.D objects (i.e. calculate calibration curves from SRM
measurements, and apply them to quantify the compositions of your unknown samples).

Filtering

Finally, there is an additional ‘object’ attached to each latools.D object, specifically for handling data filtering.
This 1latools.filt object contains all the information about filters that have been calculated for the data, and
allows you to switch filters on or off for individual samples, or subsets of samples. This is best demonstrated by
example, so we’ll return to this in more detail in the Data Selection and Filtering section of the Beginner’s Guide

1.1.2.4 Where next?

Hopefully, you now have a rudimentary understanding of how latools works, and how it’s put together. To start
using latools, install it on your system, then work through the step-by-step example in the Beginner’s Guide guide
to begin getting to grips with how latools works. If you already know what you’re doing and are looking for more
in-depth information, head to advanced_topics, or use the search bar in the top left to find specific information.

1.1.3 Installation
1.1.3.1 Prerequisite: Python

Before you install 1atools, you’ll need to make sure you have a working installation of Python, preferably version
3.5+. If you don’t already have this (or are unsure if you do), we recommend that you install one of the pre-packaged
science-oriented Python distributions, like Continuum’s Anaconda. This provides a working copy of Python, and most
of the modules that 1atools relies on.

1.1. User Guide 5

https://www.continuum.io/downloads

latools Documentation, Release 0.3.11

If you already have a working Python installation or don’t want to install one of the pre-packaged Python distributions,
everything below should work.

Tip: Make sure you set the Anaconda Python installation as the system default, or you are working in a virtual
environment that uses the correct Python version. If you don’t know what a virtual environment’ is, don’t worry - just
make sure you check the box saying ‘make this my default Python’ at the appropriate time when installing Anaconda.

1.1.3.2 Installing 1atools

There are two ways to install latools. We recommend the first method, which will allow you to easily keep your
installation of 1atools up to date with new developments.

Both methods require entering commands in a terminal window. On Mac, open the Terminal application in ‘/Appli-
cations/Utilities’. On Windows, this is a little more complex - see instructions here.

1. Using pip

pip install latools

For in-depth instructions on using pip, see here

2. Using conda

Coming soon. ..

1.1.3.3 Next Steps

If this is your first time, read through the Getting Started guide. Otherwise, get analysing!

1.1.4 Beginner’s Guide

1.1.4.1 Getting Started

This guide will take you through the analysis of some example data included with 1atools, with explanatory notes
telling you what the software is doing at each step. We recommend working through these examples to understand the
mechanics of the software before setting up your Three Steps to Configuration, and working on your own data.

The Fundamentals: Python

Python is an open-source (free) general purpose programming language, with growing application in science.
latools is a python module - a package of code containing a number of Python objects and functions, which
run within Python. That means that you need to have a working copy of Python to use latools.

If you don’t already have this (or are unsure if you do), we recommend that you install one of the pre-packaged
science-oriented Python distributions, like Continuum’s Anaconda (recommended). This provides a complete working
installation of Python, and all the pre-requisites you need to run latools.

6 Chapter 1. Overview

https://projects.raspberrypi.org/en/projects/using-pip-on-windows
https://docs.python.org/3/installing/index.html
https://www.python.org/
https://www.continuum.io/downloads

latools Documentation, Release 0.3.11

latools has been developed and tested in Python 3.5. It should also run on 2.7, but we can’t guarantee that it will
behave.

“latools” should work in any python interpreter, but we recommend either Jupyter Notebook or iPython. Jupyter is a
browser-based interface for ipython, which provides a nice clean interactive front-end for writing code, taking notes
and viewing plots.

For simplicity, the rest of this guide will assume you’re using Jupyter notebook, although it should translate directly
to other Python interpreters.

For a full walk through of getting 1atools set up on your system, head on over to the /nstallation guide.

Preparation

Before we start latools, you should create a folder to contain everything we’re going to do in this guide.
For example, you might create a folder called latools_demo/ on your Desktop - we’ll refer to this folder as
latools_demo/ from now on, but you can call it whatever you want. Remember where this folder is - we’ll come
back to it a lot later.

Tip: As you process data with 1atools, new folders will be created in this directory containing plots and exported
data. This works best (i.e. is least cluttered) if you put your data in a single directory inside a parent directory (in this
case latools_demo), so all the directories created during analysis will also be in the same place, without lots of
other files.

Starting latools

Next, launch a Jupyter notebook in this folder. To do this, open a terminal window, and run:

cd ~/path/to/latools_demo/
jupyter notebook

This should open a browser window, showing the Jupyter main screen. From here, start a new Python notebook by
clicking ‘New’ in the top right, and selecting your Python version (preferably 3.5+). This will open a new browser tab
containing your Jupyter notebook.

Once python is running, import latools into your environment:

import latools as la

All the functions of latools are now accessible from within the 1a prefix.

Tip: if you want Jupyter notebook to display plots in-line (recommended), add an additional line after the import
statement: $matplotlib inline.

Tip: To run code in a Jupyter notebook, you must ‘evaluate’ the cell containing the code. to do this, type:
e [ctrl] + [return] evaluate the selected cell.
e [shift] + [return] evaluate the selected cell, and moves the focus to the next cell

e [alt] + [return] evaluate the selected cell, and creates a new empty cell underneath.

1.1. User Guide 7

http://jupyter.org/
https://ipython.org/

latools Documentation, Release 0.3.11

Example Data

Once you’ve imported 1atools, extract the example dataset to a data/ folder within latools_demo/:

la.get_example_data('./latools_demo_tmp')

Take a look at the contents of the directory. You should see four .csv files, which are raw data files from an Agilent
7700 Quadrupole mass spectrometer, outputting the counts per second of each analyte as a function of time. Notice
that each .csv file either has a sample name, or is called ‘STD’.

Note: Each data file should contain data from a single sample, and data files containing measurements of standards
should all contain an identifying set of characters (in this case ‘STD’) in the name. For more information, see Data
Formats.

1.1.4.2 Importing Data

Once you have Python running in your latools_demo/ directory and have unpacked the Example Data, you’re
ready to start an latools analysis session. To do this, run:

eg = la.analyse(data_folder='./latools_demo_tmp"',
config='DEFAULT',
internal_standard='Ca43"',
srm_identifier="STD")

This imports all the data files within the data/ folder into an latools.analyse object called eg, along with
several parameters describing the dataset and how it should be imported:

* config='DEFAULT': The configuration contains information about the data file format and the location of
the SRM table. Multiple configurations can be set up and chosen during data import, allowing latools to
flexibly work with data from different instruments.

* internal_standard='Ca43"': This specifies the internal standard element within your samples. The
internal standard is used at several key stages in analysis (signal/background identification, normalisation), and
should be relatively abundant and homogeneous in your samples.

e srm_identifier="STD': This identifies which of your analyses contain standard reference materials
(SRMs). Any data file with ‘STD’ in its name will be flagged as an SRM measurement.

Tip: You’ve just created an analysis called eg. Everything we’ll do from this point on happens within that analysis
session, so you’ll see eg.some_function() a lot. When doing this yourself, you can give your analysis any name
you want - you don’t have to call it eg, but if you change the name of your analysis to my_analysis remember that
eg.some_funtion() will no longer work - you’ll have to use my_analysis.some_function().

If it has worked correctly, you should see the output:

latools analysis using "DEFAULT" configuration:
5 Data Files Loaded: 2 standards, 3 samples
Analytes: Mg24 Mgz25 Al27 Cad43 Ca44 Mnb5 Sr88 Bal37 Bal38
Internal Standard: Ca43

In this output, latools reports that 5 data files were imported from the data/ directory, two of which were stan-
dards (names contained ‘STD’), and tells you which analytes are present in these data. Each of the imported data files
is stored in a 1atools.D object, which are ‘managed’ by the latools.analyse object that contains them.

8 Chapter 1. Overview

latools Documentation, Release 0.3.11

Tip: latoools expects data to be organised in a particular way. If your data do not meet these specifications, have
a read through the Pre-Processing Guide for advice on getting your data in the right format.

Check inside the latools_demo directory. There should now be two new folders called reports_data/ and
export_data/ alongside the data/ folder. Note that the ‘_data’ suffix will be the same as the name of the folder
that contains your data - i.e. the names of these folders will change, depending on the name of your data folder.
latools saves data and plots to these folders throughout analysis:

* data_export will contain exported data: traces, per-ablation averages and minimal analysis exports.

* data_reports will contain all plots generated during analysis.

1.1.4.3 Plotting

Danger: Because latools offers the possibility of high-throughput analyses, it will be tempting to use it as an
analytical ‘black box’. DO NOT DO THIS. It is vital to keep track of your data, and make sure you understand
the processing being applied to it. The best way of doing this is by looking at your data.

The main way to do this in latools is to Plot all your data, or subsets of samples and analytes, at any stage
of analysis using trace_plots (). The resulting plots are saved as pdfs in the reports_data folder created
during import, in a subdirectory labelled as the analysis stage. For example, making plots now will create 5 plots in a
subdirectory called rawdata:

eg.trace_plots()

Tip: Plot appearance can be modified by specifying a range of parameters in this function. This will be used to some
extent later in this tutorial, but see trace_plots () documentation for more details.

By default all analytes from the most recent stage of analysis are plotted on a log scale, and the plot should look
something like this:

Sample-3 : rawdata Mg24

— Mg25
Al27
—— Cad3
Cad4
— Mn55
Srg8
—— Bal37
Bal38

107 4

105 4

e A

l

105 4

counts

104 B
107 4

107 - ‘
‘l”ll [

50 100

107 4

Time (s)

Once you’ve had a look at your data, you’re ready to start processing it.

1.1. User Guide 9

latools Documentation, Release 0.3.11

1.1.4.4 Data De-spiking

The first step in data reduction is the ‘de-spike’ the raw data to remove physically unrealistic outliers from the data
(i.e. higher than is physically possible based on your system setup).

Two de-spiking methods are available:

* expdecay_despiker () removes low outliers, based on the signal washout time of your laser cell. The
signal washout is described using an exponential decay function. If the measured signal decreases faster than
physically possible based on your laser setup, these points are removed, and replaced with the average of the
adjacent values.

* noise_despiker () removes high outliers by calculating a rolling mean and standard deviation, and re-
placing points that are greater than n standard deviations above the mean with the mean of the adjacent data
points.

These functions can both be applied at once, using despike ():

eg.despike (expdecay_despiker=True,
noise_despiker=True)

By default, this applies expdecay_despiker () followed by noise_despiker () to all samples. You can
specify several parameters that change the behaviour of these de-spiking routines.

The expdecay_despiker () relies on knowing the exponential decay constant that describes the washout charac-
teristics of your laser ablation cell. If this values is missing (as here), lat ools calculates it by fitting an exponential
decay function to the internal standard at the on-off laser transition at the end of ablations of standards. If this has been
done, you will be informed. In this case, it should look like:

Calculating exponential decay coefficient
from SRM Ca43 washouts...
-2.28

Tip: The exponential decay constant used by expdecay_despiker () will be specific to your laser setup. If
you don’t know what this is, despike () determines it automatically by fitting an exponential decay function to the
washout phase of measured SRMs in your data. You can look at this fit by passing exponent_plot=True to the
function.

1.1.4.5 Background Correction

The de-spiked data must now be background-corrected. This involves three steps:
1. Signal and background identification.
2. Background calculation underlying the signal regions.

3. Background subtraction from the signal.

Signal / Background Separation

This is achieved automatically using autorange () using the internal standard (Ca43, in this case), to discriminate
between ‘laser off” and ‘laser on’ regions of the data. Fundamentally, ‘laser on’ regions will contain high counts, while
‘laser off” will contain low counts of the internal standard. The mid point between this high and low offers a good
starting point to approximately identify ‘signal’ and ‘background’ regions. Regions in the ablation with higher counts
than the mid point are labelled ‘signal’, and lower are labelled ‘background’. However, because the transition between

10 Chapter 1. Overview

latools Documentation, Release 0.3.11

laser-on and laser-off is not instantaneous, both signal and background identified by this mid-point will contain part
of the ‘transition’, which must be excluded from both signal and background. This is accomplished by a simple
algorithm, which determines the width of the transition and excludes it:

1. Extract each approximate transition, and calculate the first derivative. As the transition is approximately sig-
moid, the first derivative is approximately Gaussian.

2. Fit a Gaussian function to the first derivative to determine its width. This fit is weighted by the distance from
the initial transition guess.

3. Exclude regions either side of the transitions from both signal and background regions, based on the full-width-
at-half-maximum (FWHM) of the Gaussian fit. The pre- and post-transition exclusion widths can be specified
independently for ‘off-on’ and ‘on-off” transitions.

Several parameters within autorange () can be modified to subtly alter the behaviour of this function. However, in
testing the automatic separation proved remarkably robust, and you should not have to change these parameters much.

The function is applied to your data by running:

eg.autorange (on_mult=[1.5, 0.8],
off_mult=[0.8, 1.5])

In this case, on_mult=[1.5, 0.8] signifiesthata 1.5 x FWHM of the transition will be removed before the off-on
transition (on the ‘background’ side), and 0.8 x FWHM will be removed after the transition (on the ‘signal’ side), and
vice versa for the on-off transition. This excludes more from the background than the signal, avoiding spuriously high
background values caused by the tails of the signal region.

Tip: Look at your data! You can see the regions identified as ‘signal’ and ‘background’ by this algorithm by
plotting your data using eg.trace_plots (ranges=True). Because the analysis has progressed since the last
time you plotted (the data have been de-spiked), these plots will be saved in a new de-spiked sub-folder within
the reports_data folder. This will produce plots with ‘signal’ regions highlighted in red, and ‘background’ high-
lighted in grey:

Sample-3 : despiked

107 4 Mg24
—— Mg25
106 Al27
—— Ca43
105 1 Cad4
0 —— Mn55
2 sr8s
5 10%5 —— Bal37
© Bal38
103 -
102]
101 4
50 100 150 200
Time (s)

Background Calculation

Once the background regions of the ablation data have been identified, the background underlying the signal regions
must be calculated. At present, latools includes two background calculation algorithms:

1.1. User Guide 11

latools Documentation, Release 0.3.11

* bkg_calc_interpld/() fits a polynomial function to all background regions, and calculates the intervening
background values using a 1D interpolation (numpy’s interp1D function). The order of the polynomial can be
specified by the ‘kind’ variable, where kind=0 simply interpolates the mean background forward until the next

measured background region.

* bkg_calc_weightedmean () calculates a Gaussian-weighted moving average, such that the interpolated
background at any given point is determined by adjacent background counts on either side of it, with the closer
(in Time) being proportionally more important. The full-width-at-half-maximum (FWHM) of the Gaussian
weights must be specified, and should be greater than the time interval between background measurements, and
less than the time-scale of background drift expected on your instrument.

Warning:

background calculation method.

Use extreme caution with polynomial backgrounds of order>1. You should only use this if you
know you have significant non-linear drift in your background, which you understand but cannot be dealt with by
changing you analytical procedure. In all tested cases the weighted mean background outperformed the polynomial

Note:
contributions. If not, get in touch!

Other background fitting functions can be easily incorporated. If you’re Python-literate, we welcome your

For this demonstration, we will use the bkg_calc_weightedmean () background, with a FWHM of 5 min-
utes (weight_fwhm=300 seconds), that only considers background regions that contain greater than 10 points

(n_min=10):

eg.bkg_calc_weightedmean (weight_fwhm=300,
n_min=10)

and plot the resulting background:

eg.bkg_plot ()

which is saved in the reports_data subdirectory, and should look like this:

Points = raw data; Bars = stderr; Lines = Calculated Background; Envelope = Background stderr

i o N ™ N
g o % % 2 a2¢
104 32 £ LE s bE (% | —— Mg25
i & L 8 i Al27
—— Ca43
i { Cad4
10° 4 | —— Mn55
z ‘ . Sre8
2 = - | ; —— Bal37
o L= L E) Bal38
g 102 | I] | l} | =
5 :‘ : '
o
& | ‘
| | |
10! 4 I ﬂ‘ l
100 4
0 200 400 600 800 1000 1200

Time (s)

12

Chapter 1. Overview

latools Documentation, Release 0.3.11

Background Subtraction

Once the background is calculated, it subtracted from the signal regions using bkg_correct ():

eg.bkg_subtract ()

Tip: Remember that you can plot the data and examine it at any stage of your processing. running eg.
trace_plot () now would create a new subdirectory called ‘bkgcorrect’ in your ‘reports_data’ directory, and plot
all the background corrected data.

1.1.4.6 Ratio Calculation

Next, you must normalise your data to an internal standard, using ratio ():

eg.ratio()

The internal standard is specified during data import, but can also be changed here by specifying
internal_standard in ratio (). In this case, the internal standard is Ca43, so all analytes are divided by
Cad3.

Note: latools works entirely in ratios from here on. This avoids cumbersome assumptions regarding bulk sample
composition required to attain absolute analyte concentrations, and makes processing and error propagation numeri-
cally simpler. If you require absolute concentrations, these may be calculated from the ratio values at the end of data
processing, as long as you know the concentration of the internal standard in your samples.

1.1.4.7 Calibration

Once all your data are normalised to an internal standard, you’re ready to calibrate the data. This is done by creating
a calibration curve for each element based on SRMs measured throughout your analysis session, and a table of known
SRM values. You can either calculate a single calibration from a combination of all your measured standards, or
generate a time-sensitive calibration to account for sensitivity drift through an analytical session. The latter is achieved
by creating a separate calibration curve for each element in each SRM measurement, and linearly extrapolating these
calibrations between neighbouring standards.

Calibration is performed using the calibrate () method:

eg.calibrate(drift_correct=False,
srms_used=['NIST610"', 'NIST612', 'NIST614'])

In this simple example case, our analytical session is very short, so we are not worried about sensitivity drift
(drift_correct=False). poly_n=0 is fitting a polynomial calibration line to the data that is forced through
zero. Changing this number alters the order of polynomial used during calibration. Because of the wide-scale linearity
of ICPM-MS detectors, poly_n=0 should normally provide an adequate calibration line. If it does not, it suggests
that either one of your ‘known’ SRM values may be incorrect, or there is some analytical problem that needs to be
investigated (e.g. interferences from other elements). Finally, srms_used contains the names of the SRMs measured
throughout analysis. The SRM names you give must exactly (case sensitive) match the SRM names in the SRM table.

Note: For calibration to work, you must have an SRM table containing the element/internal_standard ratios of the
standards you’ve measured, whose location is specified in the latools configuration. You should only need to do this

1.1. User Guide 13

latools Documentation, Release 0.3.11

once for your lab, but it’s important to ensure that this is done correctly. For more information, see the Three Steps to
Configuration section.

First, Lat ools will automatically determine the identity of measured SRMs throughout your analysis session using a
relative concentration matrix (see SRM Identification section for details). Once you have identified the SRMs in your
standards, latools will import your SRM data table (defined in the configuration file), calculate a calibration curve
for each analyte based on your measured and known SRM values, and apply the calibration to all samples.

The calibration lines for each analyte can be plotted using:

eg.calibration_plot ()

Which should look something like this:

0.010 | 20mg 7 0.010 | Mg 3 0.10{ 27, G
// // //
0.008 A e 1 0.008 A L, 1 0.08 A R 1
T e © Pid © e
4 7 e
< 0.006 e 1 < 0.006 e 1 2 0.06 L 1
2 0.004 4 L’ 1 2 0.004 4 L 1 2 0.04 L 1
// ,/ //
. .
0.002 - .77y = (6.29+/-0.04)e-03 x] 0.002 1 o ¥ =1(4.59+/-0.03)e-02 x] 0.02 1 7"y =(2.86+/-0.00)e-03 x]
» R2: >0.999 P R2: 0.999 et R2: 0.015
0.000 T T T 0.000 T T T T 0.00 . - .
0.0 0.5 1.0 1.5 0.00 0.05 0.10 0.15 0.20 0 10 20 30
counts/counts Ca counts/counts Ca counts/counts Ca
0.0044 55Mn poid 0.003 1 88g R 137g4 o’
" 7 0.0015 4 o0
// /, /,
0.003 A i 1 i i
8 ot 8 0.002 4 et 1 8 et
< - 2 - 3 0.0010 A e]
£ 0.002 1 gt 1 £ o £ s
e 4 4
g el © 0.001 1 Rl 1 ® 0.0005 | el]
0-0011 7y (1.16+/-0.00)e-03 x| 7y = (5.31+/-0.00)e-04 x 7y = (2.44+/:0.00)e-03 x
» R2: >0.999 o R2: >0.999 o R2: >0.999
0.000 T T : 0.000 T T 0.0000 + T T T
0 1 2 3 0 2 4 6 0.0 0.2 0.4 0.6
counts/counts Ca counts/counts Ca counts/counts Ca
13SBa . Rd
0.0015 - R
4
-
© .
o 7
3 0.0010 A L 1
1S ’
£ .
g s
0.0005 - L7 1
.77y =(3.81+/-0.00)e-04 x
ot R2: >0.999
0.0000 + r . . .
0 1 2 3 4

counts/counts Ca

Where each panel shows the measured counts/count (x axis) vs. known mol/mol (y axis) for each analyte with asso-
ciated errors, with the fitted calibration line, equation and R2 of the fit. The axis on the right of each panel contains a
histogram of the raw data from each sample, showing where your sample measurements lie compared to the range of
the standards.

1.1.4.8 Data Selection and Filtering
The data are now background corrected, normalised to an internal standard, and calibrated. Now we can get into some
of the new features of 1atools, and start thinking about data filtering.

This section will tell you the basics - what a filter is, and how to create and apply one. For most information on the
different types of filters available in 1atools, head over to the Filters section.

14 Chapter 1. Overview

latools Documentation, Release 0.3.11

What is Data Filtering?

Laser ablation data are spatially resolved. In heterogeneous samples, this means that the concentrations of different
analytes will change within a single analysis. This compositional heterogeneity can either be natural and expected (e.g.
Mg/Ca variability in foraminifera), or caused by compositionally distinct contaminant phases included in the sample
structure. If the end goal of your analysis is to get integrated compositional estimates for each ablation analysis,
how you deal with sample heterogeneity becomes central to data processing, and can have a profound effect on the
resulting integrated values. So far, heterogeneous samples tend to be processed manually, by choosing regions to
integrate by eye, based on a set of criteria and knowledge of the sample material. While this is a valid approach to
data reduction, it is not reproducible: if two ‘expert analysts’ were to process the data, the resulting values would not
be quantitatively identical. Reproducibility is fundamental to sound science, and the inability to reproduce integrated
values from identical raw data is a fundamental flaw in Laser Ablation studies. In short, this is a serious problem.

To get round this, we have developed ‘Data Filters’. Data Filters are systematic selection criteria, which can be
applied to all samples to select specific regions of ablation data for integration. For example, the analyst might apply
a filter that removes all regions where a particular analyte exceeds a threshold concentration, or exclude regions
where two contaminant elements co-vary through the ablation. Ultimately, the choice of selection criteria remains
entirely subjective, but because these criteria are quantitative they can be uniformly applied to all specimens, and most
importantly, reported and reproduced by an independent researcher. This removes significant possibilities for ‘human
error’ from data analysis, and solves the long-standing problem of reproducibility in LA-MS data processing.

Data Filters

latools includes several filtering functions, which can be created, combined and applied in any order, repetitively
and in any sequence. By their combined application, it should be possible to isolate any specific region within the data
that is systematically identified by patterns in the ablation profile. These filter are (in order of increasing complexity):

e filter_threshold(): Creates two filter keys identifying where a specific analyte is above or below a
given threshold.

e filter_distribution (): Finds separate populations within the measured concentration of a single an-
alyte within by creating a Probability Distribution Function (PDF) of the analyte within each sample. Local
minima in the PDF identify the boundaries between distinct concentrations of that analyte within your sample.

e filter_clustering (): A more sophisticated version of filter_distribution (), which uses data
clustering algorithms from the sklearn module to identify compositionally distinct ‘populations’ in your data.
This can consider multiple analytes at once, allowing for the robust detection of distinct compositional zones in
your data using n-dimensional clustering algorithms.

e filter_ correlation (): Finds regions in your data where two analytes correlate locally. For example, if
your analyte of interest strongly co-varies with an analyte that is a known contaminant indicator, the signal is
likely contaminated, and should be discarded.

It is also possible to ‘train’ a clustering algorithm based on analyte concentrations from all samples, and then apply it
to individual filters. To do this, use:

e fit_classifier (): Uses a clustering algorithm based on specified analytes in all samples (or a subset) to
identify separate compositions within the entire dataset. This is particularly useful if (for example) all samples
are affected by a contaminant with a unique composition, or the samples contain a chemical ‘label’ that identifies
a particular material. This will be most robustly identified at the whole-analysis level, rather than the individual-
sample level.

* apply_classifier (): Applies the classifier fitted to the entire dataset to all samples individually. Creates
a sample-level filter using the classifier based on all data.

For a full account of these filters, how they work and how they can be used, see Filters.

1.1. User Guide 15

http://scikit-learn.org/

latools Documentation, Release 0.3.11

Simple Demonstration

Choosing a filter

The foraminifera analysed in this example dataset are from culture experiments and have been thoroughly cleaned.
There should not be any contaminants in these samples, and filtering is relatively straightforward. The first step in
choosing a filter is to look at the data. You can look at the calibrated profiles manually to get a sense of the patterns in

the data (using eg.trace_plots()):

10° 4 Sample—3 ,EaJ'P'fa_ted, —_—

mol/mol Ca43

50

ool Wpheu b

—a e Mg24
— Mg25
Al27
— Cad3
RN Cad4
—— Mn55
Srés
—— Bal37
Bal3s

200

Or alternatively, you can make a ‘crossplot’ (using eg.crossplot ()) of your data, to examine how all the trace

elements in your samples relate to each other:

16

Chapter 1. Overview

latools Documentation, Release 0.3.11

o n o o
n — — o o~ < — o~
AR TS ; . o
Mg24 - i I
¢ o s L
ol 1
mmol/mol E : Z . L 10
: : L J i 5
15 A L
| Mg25 % g
10 A mmol/mol J...: a -
51 .] E ‘
F 600
Al27 L 400
pmol/mol
- 200
|l - i o || || — |
40 4
Mn55
209 . pmol/mol =
. o 5N
o bl |l o |
- o F1.
a" 0 W F K- >
Sr88
mmol/mol r1.o
- lf— - s | 0.5

3
|

Bal37 |

j:;' pmol/mol

——

e —
o
0.5 [T | [E———
]

o 1 Bal38 1.0
" | pmol/mol
I
u
T T T T T T T T r 0‘5
2 R 2 8 g 0 a3
~ n — — o —

This plots every analyte in your ablation profiles, plotted against every other analyte. The axes in each panel are
described by the diagonal analyte names. The colour intensity in each panel corresponds to the data density (i.e. it’s a
2D histogram!).

Within these plots, you should focus on the behaviour of ‘contaminant indicator’ elements, i.e. elements that are
normally within a known concentration range, or are known to be associated with a possible contaminant phase. As
these are foraminifera, we will pay particularly close attention to the concentrations of Al, Mn and Ba in the ablations,
which are all normally low and homogeneous in foraminifera samples, but are prone to contamination by clay particles.
In these samples, the Ba and Mn are relatively uniform, but the Al increases towards the end of each ablation. This is
because the tape that the specimens were mounted on contains a significant amount of Al, which is picked up by the
laser as it ablates through the shell. We know from experience that the tape tends to have very low concentration of
other elements, but to be safe we should exclude regions with hi Al/Ca from our analysis.

1.1. User Guide 17

latools Documentation, Release 0.3.11

Creating a Filter

We wouldn’t expect cultured foraminifera to have a Al/Ca of ~100 umol/mol, so we therefore want to remove all data
from regions with an Al/Ca above this. We’ll do this with a threshold filter:

eg.filter_threshold(analyte="A127"', threshold=100e-6) # remember that all units are_
—1in mol/mol!

This goes through all the samples in our analysis, and works out which analyses have an Al/Ca both greater than and
less than 100 pmol/mol (remember, all units are in mol/mol at this stage). This function calculates the filters, but does
not apply them - that happens later. Once the filters are calculated, a list of filters and their current status is printed:

Subset All_Samples:
Samples: Sample-1, Sample-2, Sample-3

n Filter Name Mg24 Mg25 Al27 Ca43 Ca44 Mn55 Sr88 Bal37 Bal38
0 Al27_thresh_below False False False False False False False False False
1 Al27_thresh_above False False False False False False False False False

You can also check this manually at any time using:

eg.filter_status /()

This produces a grid showing the filter numbers, names, and which analytes they are active for (for each analyte False
= inactive, True = active). The filter_ threshold function has generated two filters: one identifying data above
the threshold, and the other below it. Finally, notice also that it says ‘Subset: All_Samples’ at the top, and lists which
samples they are. You can apply different filters to different subsets of samples... We’ll come back to this later. This
display shows all the filters you’ve calculated, and which analytes they are applied to.

Before we think about applying the filter, we should check what it has actually done to the data.

Note: Filters do not delete any data. They simply create a mask which tells latools functions which data to use, and
which to ignore.

Checking a Filter

You can do this in three ways:

1. Plot the traces, with £i1t=True. This plots the calibrated traces, with areas excluded by the filter shaded out
in grey. Specifying £i1t=True shows the net effect of all active filters. By setting £i1t as a number or filter
name, the effect of one individual filter will be shown.

2. Crossplot with £11t=True will generate a new crossplot containing only data that remains after filtering. This
can be useful for refining filter choices during multiple rounds of filtering. You can also set £i1t to be a filter
name or a number, as with trace plotting.

3. The most sophisticated way of looking at a filter is by creating a ‘filter_report’. This generates a plot of each
analysis, showing which regions are selected by particular filters:

eg.filter_reports (analytes="'A127"', filt_str='thresh')

Where analytes specifies which analytes you want to see the influence of the filters on, and £i1t_str identifies
which filters you want to see. £i1t_str supports partial filter name matching, so ‘thresh’ will pick up any filter with
‘thresh’ in the name - i.e. if you’d calculated multiple thresholds, it would plot each on a different plot. If all has gone
to plan, it will look something like this:

18 Chapter 1. Overview

latools Documentation, Release 0.3.11

0.40 41 Sample-3: Al27_thresh) o excl
0.35 A e 0 _below
e 1 _above
0.30 4
= @
g 0.25 ° e
é K ° °
£ 0201 . s .
S 0.15 - @ o
5 & °
0.10 === = o O e
‘5 ; > o
0.05 - s 4
os L)
0.00 - ca ¢
0 25 50 75 100 125 150 175 200 O 20 40 60

Time (<)

In the case of a threshold filter report, the dashed line shows the threshold, and the legend identifies which data regions
are selected by the different filters (in this case ‘0_below’ or ‘1_above’). The reports for different types of filter are
slightly different, and often include numerous groups of data. In this case, the 100 pmol/mol threshold seems to do
a good job of excluding extraneously high Al/Ca values, so we’ll use the ‘0_AI27_thresh_below’ filter to select these

data.

Applying a Filter

Once you’ve identified which filter you want to apply, you must turn that filter ‘on’ using:

eg.filter_on(filt="Albelow")

Where £ilt can either be the filter number (corresponding to the ‘n’ column in the output of filter_status())
or a partially matching string, as here. For example, 'Albelow' is most similar to 'A127_thresh _below', so
this filter will be turned on. You could also specify 'below', which would turn on all filters with ‘below’ in the
name. This is done using ‘fuzzy string matching’, provided by the fuzzywuzzy package. There is also a counterpart
eg.filter_off () function, which works in the inverse. These functions will turn the threshold filter on for all
analytes measured in all samples, and return a report of which filters are now on or off:

Subset All_Samples:
Samples: Sample-1, Sample-2, Sample-3

n Filter Name Mg24 Mg25 Al27 Ca43 Cad4 Mnb55 Sr88 Bal37 Bal38
0 Al27_thresh_below True True True True True True True True True
1 Al27_thresh_above False False False False False False False False False

In some cases, you might have a sample where one analyte is effected by a contaminant that does not alter other
analytes. If this is the case, you can switch a filter on or off for a specific analyte:

eg.filter_off (filt='Albelow', analyte='Mg25")

Subset All_Samples:
Samples: Sample-1, Sample-2, Sample-3

n Filter Name Mg24 Mg25 Al27 Ca4d3 Ca4d4 Mn55 Sr88 Bal37 Bal38
0 Al27_thresh_below True False True True True True True True True
1 Al27_thresh_above False False False False False False False False False

Notice how the ‘Al27_thresh_below’ filter is now deactivated for Mg25.

1.1. User Guide 19

latools Documentation, Release 0.3.11

Deleting a Filter

When you create filters they are not automatically applied to the data (they are ‘off” when they are created). This
means that you can create as many filters as you want, without them interfering with each other, and then turn them
on/off independently for different samples/analytes. There shouldn’t be a reason that you’d need to delete a specific
filter.

However, after playing around with filters for a while, filters can accumulate and get hard to keep track of. If this
happens, you can use :method:‘latools.analyse.filter_clear* to get rid of all of them, and then re-run the code for the
filters that you like to re-create them.

Sample Subsets

Finally, let’s return to the ‘Subsets’, which we skipped over earlier. It is quite common to analyse distinct sets of
samples in the same analytical session. To accommodate this, you can create data ‘subsets’ during analysis, and treat
them in different ways. For example, imagine that ‘Sample-1’ in our test dataset was a different type of sample, that
needs to be filtered in a different way. We can identify this as a subset by:

eg.make_subset (samples='Sample-1', name='setl')
eg.make_subset (samples=["'Sample-2"', 'Sample-3'], name='set2')

And filters can be turned on and off independently for each subset:

eg.filter_on(filt=0, subset='setl')

Subset setl:
Samples: Sample-1

n Filter Name Mg24 Mg25 Al27 Ca43 Ca4di4 Mn55 Sr88 Bal37 Bal38
0 Al27_thresh_below True True True True True True True True True
1 Al27_thresh_above False False False False False False False False False

eg.filter_off (filt=0, subset='set2')

Subset set2:
Samples: Sample-2, Sample-3

n Filter Name Mg24 Mg25 Al27 Ca4d3 Ca4d4 Mn55 Sr88 Bal37 Bal38
0 Al27_thresh_below False False False False False False False False False
1 Al27_thresh_above False False False False False False False False False

To see which subsets have been defined:

eg.subsets

{'All_Analyses': ['Sample-1', 'Sample-2', 'Sample-3', 'STD-1', 'STD-2'],

'All_Samples': ['Sample-1', 'Sample-2', 'Sample-3'],
'sSTD': ['STD-1', 'STD-2'],

'setl': ['Sample-1'],

'set2': ['Sample-2', 'Sample-3']}

Note: The filtering above is relatively simplistic. More complex filters require quite a lot more thought and care in
their application. For examples of how to use clustering, distribution and correlation filters, see the Advanced Filtering

20 Chapter 1. Overview

latools Documentation, Release 0.3.11

section.

1.1.4.9 Sample Statistics

After filtering, you can calculated and export integrated compositional values for your analyses:

eg.sample_stats (stats=['mean', 'std'], filt=True)

Where stats specifies which functions you would like to use to calculate the statistics. Built in options are:
* 'mean': Arithmetic mean, calculated by np . nanmean.
* 'std': Arithmetic standard deviation, calculated by np.nanstd.
e 'se': Arithmetic standard error, calculated by np.nanstd / n.
e '"H15_mean': Huber (H15) robust mean.
e '"H15_std': Huber (H15) robust standard deviation.
* '"H15_se': Huber (H15) robust standard error.

e custom_fn (a): A function you’ve written yourself, which takes an array (a) and returns a single value. This
function must be able to cope with NaN values.

Where the Huber (H15) robust statistics remove outliers from the data, as described here.

You can specify any function that accepts an array and returns a single value here. £i1t can either be True (applies
all active filters), or a specific filter number or partially matching name to apply a specific filter. In combination with
data subsets, and the ability to specify different combinations of filters for different subsets, this provides a flexible
way to explore the impact of different filters on your integrated values.

We’ve now calculated the statistics, but they are still trapped inside the ‘analyse’ data object (eg). To get them out
into a more useful form:

stats = eg.getstats()

This returns a pandas.DataFrame containing all the statistics we just calculated. You can either keep this data
in python and continue your analysis, or export the integrated values to an external file for analysis and plotting in
your_favourite_program.

The calculated statistics are saved autoatmically to ‘sample_stats.csv’ in the ‘data_export’ directory. You can also spec-
ify the filename manually using the £ilename variable in getstats (), which will be saved in the ‘data_export’
directory, or you can use the pandas built in export methods like to_csv () or to_excel () to take your data
straight to a variety of formats, for example:

stats.to_csv('stats.csv') # .csv format

1.1.4.10 Reproducibility

A key new feature of 1latools is making your analysis quantitatively reproducible. As you go through your analysis,
latools keeps track of everything you’re doing in a command log, which stores the sequence and parameters of
every step in your data analysis. These can be exported, alongside an SRM table and your raw data, and be imported
and reproduced by an independent user.

If you are unwilling to make your entire raw dataset available, it is also possible to export a ‘minimal’ dataset, which
only includes the elements required for your analyses (i.e. any analyte used during filtering or processing, combined
with the analytes of interest that are the focus of the reduction).

1.1. User Guide 21

http://www.rsc.org/images/robust-statistics-technical-brief-6_tcm18-214850.pdf

latools Documentation, Release 0.3.11

Minimal Export

The minimum parameters and data to reproduce you’re analysis can be exported by:

eg.minimal_export ()

This will create a new folder inside the data_export folder, called minimal export. This will contain your
complete dataset, or a subset of your dataset containing only the analytes you specify, the SRM values used to calibrate
your data, and a . 1og file that contains a record of everything you’ve done to your data.

This entire folder should be compressed (e.g. .zip), and included alongside your publication.

Tip: When someone else goes to reproduce your analysis, everything you’ve done to your data will be re-calculated.
However, analysis is often an iterative process, and an external user does not need to experience all these iterations.
We therefore recommend that after you’ve identified all the processing and filtering steps you want to apply to the
data, you reprocess your entire dataset using only these steps, before performing a minimal export.

Import and Reproduction

To reproduce someone else’s analysis, download a compressed minimal_export folder, and unzip it. Next, in a new
python window, run:

import latools as la

rep = la.reproduce ('path/to/analysis.log')

This will reproduce the entire analysis, and call it ‘rep’. You can then experiment with different data filters and
processing techniques to see how it modifies their results.

1.1.4.11 Summary

If we put all the preceding steps together:

eg = la.analyse(data_folder='./latools_demo_tmp"',
config='DEFAULT',
internal_standard='Ca43"',
srm_identifier='STD")
eg.trace_plots ()

eg.despike (expdecay_despiker=True,
noise_despiker=True)

5, 0.81],

eg.autorange (on_mult=[,
.8, 1.51)

1.
off mult=[0

eg.bkg_calc_weightedmean (weight_fwhm=300,
n_min=10)

eg.bkg_plot ()
eg.bkg_subtract ()

eg.ratio()

(continues on next page)

22 Chapter 1. Overview

latools Documentation, Release 0.3.11

(continued from previous page)

eg.calibrate(drift_correct=False,
srms_used=['NIST610"', 'NIST612', 'NIST614'])

eg.calibration_plot ()

eg.filter_threshold(analyte='A127', threshold=100e-6) # remember that all units are,
—in mol/mol!

eg.filter_reports (analytes="'Al127"', filt_str='thresh')
eg.filter_on(filt="Albelow")
eg.filter off (filt='Albelow', analyte='Mg25")

eg.make_subset (samples='Sample-1', name='setl')
eg.make_subset (samples=["'Sample-2"', 'Sample-3'], name='set2')

eg.filter_on(filt=0, subset='setl')
eg.filter off (£filt=0, subset='set2')
eg.sample_stats (stats=['mean', 'std'], filt=True)
stats = eg.getstats()

eg.minimal_export ()

Here we processed just 3 files, but the same procedure can be applied to an entire day of analyses, and takes just a
little longer.

The processing stage most likely to modify your results is filtering. There are a number of filters available, ranging
from simple concentration thresholds (filter_threshold (), as above) to advanced multi-dimensional clustering
algorithms (filter_clustering ()). We recommend you read and understand the section on advanced_filtering
before applying filters to your data.

Before You Go

Before you try to analyse your own data, you must configure latools to work with your particular instrument/standards.
To do this, follow the Three Steps to Configuration guide.

We also highly recommend that you read through the advanced_topics, so you understand how latools works
before you start using it.

1.1.4.12 FAQs

| can’t get my data to import...

Follow the instructions /ere. If you’re really stuck,

1.1. User Guide 23

latools Documentation, Release 0.3.11

Your software is broken. It doesn’t work!

If you think you’ve found a bug in latools (i.e. not specific to your computer / Python installation), or that
latools is doing something peculiar, we’re keen to know about it. You can tell us about it by creating an issue
on the project GitHub page. Describe the problem as best you can, preferably with some examples, and we’ll get to it
as soon as we can.

I want to do X, can you add this feature?

Probably! Head on over to the GitHub project page, and create an issue. Write us a detailed description of what you’re
trying to do, and label the issue as an ‘Enhancement’ (on the right hand side), and we’ll get to it as soon as we can.

1.1.5 Example Analyses

1. Cultured foraminifera data, and comparison to manually reduced data.

2. Downcore (fossil) foraminifera data, and comparison to manually reduced data.
3. Downcore (fossil) foraminifera data, and comparison to data reduced with Iolite.
4. Zircon data, and comparison to values reported in Burnham and Berry, 2017.

All these notebooks and associated data are available for download here.

1.1.6 Filters

These pages contain specific information about the types of filters available in 1atools, and how to use them.

For a general introduction to filtering, head over to the Data Selection and Filtering section of the Begginer’s Guide.

1.1.6.1 Thresholds

Thresholds are the simplest type of filter in 1atools. They identify regions where the concentration or local gradient
of an analyte is above or below a threshold value.

Appropriate thresholds may be determined from prior knowledge of the samples, or by examining whole-analysis
level cross-plots of the concentration or local gradients of all pairs of analytes, which reveal relationships within all
the ablations, allowing distinct contaminant compositions to be identified and removed.

Tip: All the following examples will work on the example dataset worked through in the Beginner’s Guide. If you try
multiple examples, be sure to run eg.filter_clear () in between each example, or the filters might not behave
as expected.

Concentration Filter

Selects data where a target analyte is above or below a specified threshold.

For example, applying an threshold Al/Ca value of 100 ymol/mol to Sample-1 of the example data:

Create the filter.
eg.filter_threshold(analyte="A127"', threshold=100e-6)

24 Chapter 1. Overview

https://github.com/oscarbranson/latools/issues/new
https://github.com/oscarbranson/latools/issues/new
http://nbviewer.jupyter.org/github/oscarbranson/latools/blob/master/Supplement/cultured_foram_manual.ipynb
http://nbviewer.jupyter.org/github/oscarbranson/latools/blob/master/Supplement/fossil_foram_manual.ipynb
http://nbviewer.jupyter.org/github/oscarbranson/latools/blob/master/Supplement/fossil_foram_iolite.ipynb
https://iolite-software.com/
http://nbviewer.jupyter.org/github/oscarbranson/latools/blob/master/Supplement/zircon_manual.ipynb
https://www.nature.com/articles/ngeo2942
https://github.com/oscarbranson/latools/tree/master/Supplement

latools Documentation, Release 0.3.11

This creates two filters - one that selects data above the threshold, and one that selects data below the threshold. To
see what filters you’ve created, and whether they’re ‘on’ or ‘off’, use filter_status (), which will print:

Subset All_Samples:

n Filter Name Mg24 Mg25 Al27 Ca4d3 Ca4d4 Mn55 Sr88 Bal37 Bal38
0 Al27_thresh_below False False False False False False False False False
1 Al27_thresh_above False False False False False False False False False

To effect the data, a filter must be activated:

Select data below the threshold
eg.filter_on('Al27_below')

Plot the data for Sample-1 only
eg.data['Sample-1"].tplot (filt=True)

mol/mol Ca43

Threshold Filter - Absolute

Sample-1: calibrated Mg24
10724 . N\ —— Mg25
— Al27
102 Mn55
JW ‘ \ —— sr88
100 pmol/mol Al/Ca Bal37
B e o Pt vt sttt b b Whpe T TTT T W ----- — Bal38
10—5 4
10_7 E T T T T
50 100 150 200
Time (s)

Data above the threshold values (dashed line) are excluded by this filter (greyed out).

Tip:
by 1

When using filter _on() or filter_off (), you don’t need to specify the entire filter name displayed
Iter_status (). These functions identify the filter with the name most similar to the text you entered, and

activate/deactivate it.

Related Functions

filter threshold () creates a threshold filter.
filter on() and filter off () turn filters on or off.

crossplot () creates a cross-plot of all analytes, showing relationships within the data at the population-level
(all samples). This can be useful when choosing a threshold value.

filter reports () creates plots of a particular filter, showing which sections of the ablation are selected.

histograms () creates histograms of the concentrations of all analytes. Useful for identifying threshold
values for specific analytes.

trace_plots () with option filt=True creates plots of all data, showing which regions are se-
lected/rejected by the active filters.

1.1. User Guide 25

latools Documentation, Release 0.3.11

e filter clear () deletes all filters.

Gradient Filter

Selects data where a target analyte is not changing - i.e. its gradient is constant. This filter starts by calculating the
local gradient of the target analyte:

Fig. 1: Calculating a moving gradient for the Al127 analyte. When calculating the gradient the win parameter specifies
how many points are used when calculating the local gradient.

For example, imagine a calcium carbonate sample which we know should have constant Al concentration. In this
sample, variable Al is indicative of a contaminant phase. A gradient threshold filter can be used to isolate regions
where Al is constant, and more likeley to be contaminant-free. To create an apply this filter:

eg.filter_gradient_threshold (analyte="A127"', threshold=0.5e-5, win=25)
eg.filter_on('Al27_g_below')

plot the gradient for Sample-1
eg.data['Sample-1"].gplot ('A127"', win=25)

plot the effect of the filter for Sample-1
eg.data['Sample-1"].tplot (filt=True)

Gradient Threshold Filter - Absolute

56-05 - Sample-1 : calibrated : gradient A27
4e-05 A
3e-05 1
2 2e05-
©
o
E le-05 A
3
£ 0e+00
-1le-05 A
-2e-05 A
-3e-05 T T T T
100 4 Sample-1 : calibrated . o — —— Mg24
. —— Mg25
107+ 4 — AI27
—— Cad4d
1072 VNNl ™~
o 7 ™~ Mn55
< —— Sr88
O 10734 \ V
3 el JV —— —— Bal37
= -4] Ay —— Bal38
g 10 sV ht iy
10—5 .
e Ly e ¥y
10_7 E T T T T
50 100 150 200
Time (s)

The top panel shows the calculated gradient, with the regions above and below the threshold value greyed out. the
bottom panel shows the data regions selected by the filter for all elements.

26 Chapter 1. Overview

latools Documentation, Release 0.3.11

Choosing a gradient threshold value

Gradients are in units of mol[X]/ mol[internal standard]/s. The absolute value of the gradient will change depending
on the value of win used.

Working out what a gradient threshold value should be from first principles can be a little complex. The best way
to choose a threshold value is by looking at the data. There are three functions to help you do this:

e gradient_plots () Calculates the local gradient of all samples, plots the gradients, and saves them as a
pdf. The gradient equivalent of t race_plots ().

* gradient_histogram () Plot histograms of the local gradients in the entire dataset.

* gradient_crossplot () Create crossplots of the local gradients for all analyes.

Tip: The value of win used when calculating the gradient will effect the absolute value of the calculated gradient.
Make sure you use the same win value creating filters and viewing gradients.

Related Functions

e filter threshold () creates a threshold filter.
e filter on()and filter off () turn filters on or off.

e gradient_plots () Calculates the local gradient of all samples, plots the gradients, and saves them as a
pdf. The gradient equivalent of t race _plots ().

* gradient_crossplot () Create crossplots of the local gradients for all analyes.
* gradient_histogram () Plot histograms of the local gradients in the entire dataset.

e trace plots () with option filt=True creates plots of all data, showing which regions are se-
lected/rejected by the active filters.

e filter reports () creates plots of a particular filter, showing which sections of the ablation are selected.

o filter clear () deletes all filters.

1.1.6.2 Percentile Thresholds

In cases where the absolute threshold value is not known, a percentile may be used. An absolute threshold value is
then calculated from the raw data at either the individual-ablation or population level, and used to create a threshold
filter.

Warning: In general, we discourage the use of percentile filters. It is always better to examine and understand
the patterns in your data, and choose absolute thresholds. However, we have come across cases where they have
proved useful, so they remain an available option.

Concentration Filter: Percentile

For example, to remove regions containing the top 10% of Al concentrations:

1.1. User Guide 27

latools Documentation, Release 0.3.11

eg.filter_threshold _percentile (analyte='A127"', percentiles=90)
eg.filter_on('Al_below')

eg.data['Sample-1"].tplot (filt=True)

Threshold Filter - Percentile Al27 distribution
Sample-1 : calibrated

10724 '\/\ JAVAN

107 W—vvd(wa\l \WMV Mf!
O Ry Tt St et
8 1074 4 w Tt
s
£
©
£ 1054

10_7 E T T T T

50 100 150 200

Time (s)

The histogram on the right shows the distribution of Al data in the sample, with a line showing the 90th percentile of
the data, corresponding to the threshold value used.

Gradient Filter: Percentile

The principle of this filter is the same, but it operatures on the local gradient of the data, instead of the absolute
concentrations.

1.1.6.3 Correlation

Correlation filters identify regions in the signal where two analytes increase or decrease in tandem. This can be useful
for removing ablation regions contaminated by a phase with similar composition to the host material, which influences
more than one element.

For example, the tests of foraminifera (biomineral calcium carbonate) are known to be relatively homogeneous in
Mn/Ca and Al/Ca. When preserved in marine sediments, the tests can become contaminated with clay minerals that
are enriched in Mn and Al, and unknown concentrations of other elements. Thus, regions where Al/Ca and Mn/Ca
co-vary are likely contaminated by clay materials. A Al vs. Mn correlation filter can be used to exclude these regions.

For example:

eg.filter_correlation(x_analyte='Al27', y_analyte='Mn55', window=51, r_threshold=0.5,
—p_threshold=0.05)
eg.filter_on('AlMn'")

eg.data['Sample-1"].tplot (filt=True)

28 Chapter 1. Overview

latools Documentation, Release 0.3.11

Correlation Filter

1073 4

10> 3

mol / mol *3Ca

1076 4

1077 - . : :

0.75 A
0.50 A

0.25 A

Pearson R

0.00 A

—0.25 1
0.4

0.3 A u
0.2 -

Ollp=005 | | L_J--h[‘— ————————

0.0 T T T T

Significance Level (p)

1071 1 —— Mg24

S~ NN oS, —— Mg25

1073 + M nw LW —— A7

W~ «“J TRty) \,Yy\/ Mn55
W

mol/mol Ca43

10-5 —— 5r88

W R " J Bal37

Bal38

1077 .

Time (s)

The top panel shows the two target analytes. The Pearson correlation coefficient (R) between these elements, along
with the significance level of the correlation (p) is calculated for 51-point rolling window across the data. Data are
excluded in regions R is greater than r_threshold and p is less than p_threshold.

The second panel shows the Pearson R value for the correlation between these elements. Regions where R is above
the r_threshold value are excluded.

The third panel shows the significance level of the correlation (p). Regions where p is less than p_threshold are
excluded.

The bottom panel shows data regions excluded by the combined R and p filters.

1.1. User Guide 29

latools Documentation, Release 0.3.11

Choosing R and p thresholds

The pearson R value ranges between -1 and 1, where O is no correlation, -1 is a perfect negative, and 1 is a perfect
positive correlation. The R values of the data will be effected by both the degree of correlation between the analytes,
and the noise in the data. Choosing an absolute R threshold is therefore not straightforward.

Tip: The filter does not discriminate between positive and negative correlations, but considers the absolute R value -
i.e. an r_threshold of 0.9 will remove regions where R is greater than 0.9, and less than -0.9.

Similarly, the p value of the correlation will depend on the strength of the correlation, the window size used, and the
noise in the data.

The best way to choose thresholds is by looking at the correlation values, using correlation_plots () toinspect
inter-analyte correlations before creating the filter.

For example:

eg.correlation_plots(x_analyte='A127"', y_analyte='Mnb55"', window=51) ‘

Will produce pdf plots like the following for all samples.

1071 e \‘vm/
“ W w
e
o
" 106 — A27
Mn55
= 0.5 1
c
a
% 0.0
2 1.0 A
T
g
Y 0.5 A
c
!"é
k=)
2 0.0 1 T T T T
50 100 150 200

Related Functions

e correlation_plots () creates plots of the local correlation between two analytes.

30 Chapter 1. Overview

latools Documentation, Release 0.3.11

e crossplot () creates a cross-plot of all analytes, showing relationships within the data at the population-level
(all samples). This can be useful when choosing a threshold value.

* trace _plots () with option filt=True creates plots of all data, showing which regions are se-
lected/rejected by the active filters.

e filter on()and filter off () turn filters on or off.

o filter clear () deletes all filters.

1.1.6.4 Clustering
The clustering filter provides a convenient way to separate compositionally distinct materials within your ablations,
using multi-dimensional clustering algorithms.

Two algorithms are currently available in latools: * K-Means will divide the data up into N groups of equal
variance, where N is a known number of groups. * Mean Shift will divide the data up into an arbitrary number of
clusters, based on the characteristics of the data.

For an in-depth explanation of these algorithms and how they work, take a look at the Scikit-Learn clustering pages.

For most cases, we recommend the K-Means algorithm, as it is relatively intuitive and produces more predictable
results.

2D Clustering Example

For illustrative purposes, consider some 2D synthetic data:

500 A .
500 - AT
o":"
> om ° ° .
2450 AW WA M % 450 L
3 2 °°
: Signal A i e
400 A !gna 400 A o '{’% %
Signal B %%,
0 20 40 60 80 100 440 460 480 500
Time Signal A

Fig. 2: The left panel shows two signals (A and B) which transition from an initial state where B > A (<40 s) to
a second state where A > B (>60 s). In laser ablation terms, this might represent a change in concentration of two
analytes at a material boundary. The right panel shows the relationship between the A and B signals, ignoring the time
axis.

Two ‘clusters’ in composition are evident in the data, which can be separated by clustering algorithms.

The main difference here is that the MeanShift algorithm has identified the transition points (orange) as a separate
cluster.

Once the clusters are identified, they can be translated back into the time-domain to separate the signals in the original
data:

For simplicity, the example above considers the relationship between two signals (i.e. 2-D). When creating a clustering
filter on real data, multiple analytes may be included (i.e. N-D). The only limits on the number of analytes you can
include is the number of analytes you’ve measured, and how much RAM your computer has.

1.1. User Guide 31

http://scikit-learn.org/stable/modules/clustering.html#k-means
http://scikit-learn.org/stable/modules/clustering.html#mean-shift
http://scikit-learn.org/stable/modules/clustering.html

latools Documentation, Release 0.3.11

mo-;‘r —;¢r
oo vy
. . s . 3
- r o o - o .

440 460 480 500 440 460 480 500
Signal A Signal A

Signal B
(0]

Fig. 3: In the left panel, the K-Means algorithm has been used to find the boundary between two distinct materials. In
the right panel, the Mean Shift algorithm has automatically detected three materials.

650
Mean Shift 1] Mean Shift 2
600 -
K-Means 1 K-Means 2
550 A
Fol
£ 500 !
£
450 AW A
4001 — signal A
—— Signal B
350 T T T T T T
0 20 40 60 80 100

Time

Fig. 4: Horizontal bars denote the regions identified by the K-Means and MeanShift clustering algorithms.

If, for example, your ablation contains three distinct materials with variations in five analytes, you might create a
K-Means clustering filter that takes all five analytes, and separates them into three clusters.

When to use a Clustering Filter

Clustering filters should be used to discriminate between clearly different materials in an analysis. Results will be best
when they are based on signals with clear sharp changes, and high signal/noise (as in the above example).

Results will be poor when data are noisy, or when the transition between materials is very gradual. In these cases,
clustering filters may still be useful after you have used other filters to remove the transition regions - for example
gradient-threshold or correlation filters.

Clustering Filter Design

A good place to start when creating a clustering filter is by looking at a cross-plot of your analytes:

eg.crossplot ()

A crossplot provides an overview of your data, and allows you to easily identify relationships between analytes. In
this example, multiple levels of Sr88 concentration are evident, which we might want to separate. Three Sr88 groups
are evident, so we will create a K-Means filter with three clusters:

eg.filter_clustering(analyte='Sr88', level='population', method='kmeans', n_
—clusters=3)

eg.filter_status/()

(continues on next page)

32 Chapter 1. Overview

latools Documentation, Release 0.3.11

204

101

1.2

1.0 4

15

1.0

0.5

1.01

0.5

S A

F10

20

-1.2

0.5
1.0

F1.5

0.5
1.0

Mg24
mmol/mol *Ca

g

-y

——

i,

Srg8

mmol/mol **Ca

d

i
weas |l & ; , L=
mmol/mol **Ca i f.*:- J: f .#
A7
mmol/mol *>Ca
o |y | | ——(S
i Cad4
" " mol/mol “*Ca o
. e oo
.ll'h-- i pmo:\lnrrr]\i?“(:a 1 " .
|l oL
K-

Bal37
pmol/mol 43Ca

) E (F)

e o

z

L

¢

Bal38
pmol/mol 43Ca

25

r20

r10

20

Fig. 5: A crossplot showing relationships between all measured analytes in all samples. Data are presented as 2D
histograms, where the intensity of colour relates to the number of data points in that pixel. In this example, a number
of clusters are evident in both Sr88 and Mn55, which are candidates for clustering filters.

1.1. User Guide

33

latools Documentation, Release 0.3.11

(continued from previous page)

> Subset: 0

> Samples: Sample-1, Sample-2, Sample-3

>

> n Filter Name Mg24 Mg25 Al127 Ca43 Ca4d4 Mn55 Sr88 Bal37 Bal38
> 0 Sr88_kmeans_0 False False False False False False False False False
> 1 Sr88_kmeans_1 False False False False False False False False False
> 2 Sr88_kmeans_?2 False False False False False False False False False

The clustering filter has used the population-level data to identify three clusters in Sr88 concentration, and created a
filter based on these concentration levels.

We can directly see the influence of this filter:

eg.crossplot_filters('Sr88_ kmeans')

Tip: Youcanuse crossplot_filter to see the effect of any created filters - not just clustering filters!

Here, we can see that the filter has picked out three Sr concentrations well, but that these clusters don’t seem to have
any systematic relationship with other analytes. This suggests that Sr might not be that useful in separating different
materials in these data. (In reality, the Sr variance in these data comes from an incorrectly-tuned mass spec, and tells
us nothing about the sample!)

Related Functions

* crossplot () creates a cross-plot of specified analytes, showing relationships within the data at the
population-level (all samples). This can be useful when choosing a threshold value.

e crossplot_filters () creates a cross-plot of specified analytes with the effect of a particular filter high-
lighted (see above).

e trace plots () with option filt=True creates plots of all data, showing which regions are se-
lected/rejected by the active filters.

e filter on()and filter off () turn filters on or off.

e filter clear () deletes all filters.

1.1.6.5 Signal Optimisation

This is the most complex filter available within 1atools, but can produce some of the best results.

The filter aims to identify the longest contiguous region within each ablation where the concentration of target ana-
lyte(s) is either maximised or minimised, and standard deviation is minimised.

First, we calculate the mean and standard deviation for the target analyte over all sub-regions of the data.

Next, we use the distributions of the calculated means and standard deviations to define some threshold values to iden-
tify the optimal region to select. For example, if the goal is to minimise the concentration of an analyte, the threshold
concentration value will be the lowest disinct peak in the histogram of region means. The location of this peak defines
the ‘mean’ threshold. Similarly, as the target is always to minimise the standard deviation, the standard deviation
threshold will also be the lowest distinct peak in the histogram of standard devaiations of all calculated regions. Once
identified, these thresholds are used to ‘filter’ the calculated means and standard deviations. The ‘optimal’ selection
has a mean and standard deviation below the calculated threshold values, and contains the maximum possible number
of data points.

34 Chapter 1. Overview

latools Documentation, Release 0.3.11

F10

Sr88_kmeans

201

15 A

101

Mg25
mmol/mol 43Ca

umol/mol 43Ca

mmol/mol 43Ca

F 0.5

Bal37
pmol/mol 43Ca

Bal38
pmol/mol 43Ca

r1.0

F 0.5

0.5

1.0 4

Fig. 6: A crossplot of all the data, highlighting the clusters identified by the filter.

Fig. 7: The mean and standard devation of Al27 is calculated using an N-point rolling window, then N+1, N+2 and
etc., until N equals the number of data points. In the ‘Mean’ plot, darker regions contain the lowest values, and in the
‘Standard Deviation’ plot red regions contain a higher standard deviation.

1.1. User Guide

35

latools Documentation, Release 0.3.11

1.0
200 20 200
0.8
n 15 w
= E 0.6
2 100 10 2100 @
z g 0.4
5
0.2
; 0
100 200
Center Center
8000 1500 4
6000
1000 A
=z 4000 +
500 A
2000 +
0- 0-
0 10 20 0.25 050 0.75 1.00
Scaled Mean Analyte Conc std
-3
10 1Sample-1 : calibrated
1 — Al27
m
<
[1v]
o
g 107 -
:o- o
£
20 30 40 50 60 70 80 90
Time (s)

Fig. 8: After calculating the mean and standard deviation for all regions, the optimal region is identified using threshold
values derived from the distributions of sub-region means and standard deviations. These thresholds are used to ‘filter’
the calculated means and standard deviations - regions where they are above the threshold values are greyed out in the
top row of plots. The optimal selection is the largest region where both the standard deviation and mean are below the
threshold values.

36 Chapter 1. Overview

latools Documentation, Release 0.3.11

Related Functions

e optimisation_plots () creates plots similar to the one above, showing the action of the optimisation
algorithm.

e trace_plots () with option filt=True creates plots of all data, showing which regions are se-
lected/rejected by the active filters.

e filter on() and filter off () turn filters on or off.

e filter clear () deletes all filters.
1.1.6.6 Defragmentation
Occasionally, filters can become ‘fragmented’ and erroneously omit or include lots of small data fragments. For

example, if a signal oscillates either side of a threshold value. The defragmentation filter provides a way to either
include incorrectly removed missing data regions, or exclude data in fragmented regions.

eg.filter_threshold('A127', 0.65e-4)
eg.filter_on('Al27_below')

10 { Sample-1; calibrated a e e —— Mg24
—— Mg25
10-11 — A27
) ~ — Ca#4
1072 4 / S ~ - \"\" T - N Mn55
il — Sr88
3 10] ‘ N - —— Bal3?
2 S | Wi —— Bal3s
= —4 J
E 10 e Ay s \ -
‘YJ v Ny’ W
1075 4
1076 4 N L A "M""‘\"*‘ i WM!
10—7 -
50 100 150 200
Time (s)

Notice how this filter has removed lots of small data regions, where Al27 oscillates around the threshold value.

If you think these regions should be included in the selection, the defragmentation filter can be used in ‘include’ mode
to create a contiguous data selection:

eg.filter_defragment (10, mode='include')

eg.filter_off ('A127") # deactivate the original Al filter
eg.filter_on('defrag') # activate the new defragmented filter

1.1. User Guide 37

latools Documentation, Release 0.3.11

10° 4 Sample-1 : calibrated R —— Mg24
—— Mg25
10-1 4 — AI27
— Ca44
1072 5 a f‘\/’\\‘ ~. N Mn55
o —— 5r88
o] - —
G 1073 4 A “Vqr" Bal37
E — jW —— Bal38
3 -4
g 10 y s W ' Wy
107> 5
10-¢ 4 R by Pfe W
10*7 -
50 100 150 200
Time (s)

This identifies all regions removed by the currently active filters that are 10 points or less in length, and includes them
in the data selection.

Tip: The defragmentation filter acts on all currently active filters, so pay attention to which filters are turned